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ABSTRACT 
Volumetric displays provide interesting opportunities and 
challenges for 3D interaction and visualization, particularly 
when used in a highly interactive manner. We explore this 
area through the design and implementation of techniques 
for interactive direct manipulation of objects with a 3D 
volumetric display. Motion tracking of the user's fingers 
provides for direct gestural interaction with the virtual 
objects, through manipulations on and around the display's 
hemispheric enclosure. Our techniques leverage the unique 
features of volumetric displays, including a 360° viewing 
volume that enables manipulation from any viewpoint 
around the display, as well as natural and accurate 
perception of true depth information in the displayed 3D 
scene. We demonstrate our techniques within a prototype 
3D geometric model building application. 
Categories and Subject Descriptors: H.5.2 [User 
Interfaces]: Interaction styles; I.3.6 [Methodology and 
Techniques]: Interaction techniques. 
Additional Keywords and Phrases: volumetric display, 
3D interaction, multi-finger and two-handed gestural input. 
INTRODUCTION 
Viewing imagery on volumetric displays [7, 12], which 
generate true volumetric 3D images by actually 
illuminating points in 3D space, is akin to viewing physical 
objects in the real world. Viewers can use their inherent 
physiological mechanisms for depth perception to gain a 
richer, more accurate understanding of the virtual 3D scene. 
These displays typically have a 360° field of view, and the 
user does not have to wear hardware such as shutter glasses 
or head-trackers. As such, they are a promising alternative 
to traditional display systems for viewing in 3D. 
Although these displays are now commercially available 
(e.g., www.actuality-systems.com), current applications 
tend to use them as a non-interactive output-only display 
device, much like one would use a printer. In order to fully 
leverage the unique features of these displays, however, it 
would be desirable if one could directly interact with and 
manipulate the 3D data being displayed. It should be noted 
that the vast literature on interaction within 3D virtual 
reality environments is clearly relevant, and we do indeed 
draw upon this body of previous work. However, 

volumetric displays present interesting challenges which 
demand special attention, such that a user interface 
appropriate for a virtual reality environment may not work 
well on a volumetric display, and vice versa. For example, 
in a virtual reality environment, virtual objects could be at a 
very large distance from the user’s virtual position, whereas 
all virtual objects in a volumetric display are always within 
arm’s reach of a user. However, despite this apparent 
accessibility, the imagery inside a volumetric display is 
enclosed by a protective transparent enclosure, which 
means the user cannot reach in and grab objects, whereas in 
most virtual reality environments, the user and their hands 
are often (virtually) inside the environment. These 
differences can significantly impact the usability of an 
interface, making it worthwhile to investigate new 
interaction styles specifically suited to volumetric displays. 
In this paper, we investigate interaction techniques for 
volumetric display interfaces, through the development of 
an interactive 3D geometric model building application. 
While this application area itself presents many interesting 
challenges, our focus is on the interaction techniques that 
are likely generalizable to interactive applications for other 
domains. We explore a very direct style of interaction 
where the user interacts with the virtual data using direct 
finger manipulations on and around the enclosure 
surrounding the displayed 3D volumetric image. In our 
implementation, the enclosure is a hemisphere (Figure 1). If 
the enclosure was instead a cuboid or cylinder [7], some of 
the mappings we use may need modification, but the 
overall ideas would remain applicable. 

 
Figure 1. User working with a volumetric display, with finger 
input tracked using a camera-based motion tracking system. 
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RELATED WORK 
Much research done on interactive 3D virtual environments 
to date has relied on stereoscopic displays, either 
immersive VR systems [5], or non-immersive fish tank VR 
systems using LCD shutter stereo-glasses [18-20]. 
Unfortunately, unlike volumetric displays that generate true 
3D voxels, these displays can create a conflict between the 
two mechanisms that give humans stereoscopic vision − 
convergence and accommodation (see [16] for a review of 
human stereoscopic vision). By providing two different 
images for each eye, stereoscopic displays satisfy 
convergence, but the single image plane is insufficient for 
accommodation. The result is a tendency for some users to 
experience nausea and dizziness [13]. Volumetric displays 
also do not require the use of head tracking, and its 
associated problems with lag and poor accuracy, that is 
often used with stereo displays to provide motion parallax.  
From a technology viewpoint, volumetric displays can be 
very broadly classified into three categories. Holographic 
displays [12] generate 3D images by using microscopic 
patterns on a physical imaging plane to control the 
diffraction of light. Static techniques [7] create emissive 
voxels by directly exciting points within a physical 3D 
substrate. Swept volume techniques spin a 2D time-varying 
image about an axis at a sufficiently high speed to enable 
the human viewer’s visual system to perceive a 3D 
volumetric image by fusing together the successive 2D 
images into a 3D whole. The technical details of these 
display implementations are outside the scope of our paper 
and we refer the reader to [7, 12] for more details. 
Given that volumetric displays have not been easily 
available until recently, there has been relatively little 
research on how to use such displays effectively in an 
interactive manner. A speculative paper [1] discusses 
possible interaction scenarios for volumetric displays, using 
wizard-of-oz mock-up prototypes to demonstrate various 
techniques for selection, displaying text and menus, and 
manipulating objects. However, they did not have or make 
use of a real volumetric display and as such did not 
demonstrate any working implementations of their ideas. 
From an interaction perspective, the most relevant prior art 
is in the virtual reality community, that has long explored 
interactive 3D environments, albeit using various 2D 
display technologies. This includes work on virtual object 
selection, virtual object manipulation, menu and command 
selection, and various 3D widgets. 
One of the most basic tasks in any application is object 
selection. For applications in 3D environments, it may 
seem obvious to implement selection based on the position 
of a 3D point cursor [9, 14, 15, 17]. However this requires a 
user to position the cursor, and thus their hand, in a specific 
3D location. Even by altering the mappings between the 
hand and cursor to reduce the necessary movements[17], it 
can still be a tedious task to perform repeatedly [3, 4]. The 
main alternative to using a point cursor is the ray casting 
selection cursor [11], where a virtual ray is emitted from 

the user’s hand position, so the user has control over the 
start point and orientation of the ray, much like a physical 
laser pointer. The first object it intersects is typically 
selected. Because multiple objects could be intersected, ray 
casting can present ambiguities not seen with a point 
cursor. To alleviate this, Hinckley et al [9] suggest that the 
ray casting technique could be augmented with a 
mechanism for cycling through the set of all ray-object 
intersection points. We use a similar approach for object 
selection in our application. 
In many virtual environments, (e.g., [11]), objects are 
manipulated using a 6-dof tracker. This approach allows for 
straightforward mappings where the position and 
orientation of virtual objects correspond directly to the 
tracker’s movements. Others [14] have used direct gestural 
interaction where hand movements are mapped directly to 
object movement. The HOMER technique [3] combines 
ray-casting selection with subsequent direct manipulation: 
after an object is selected, its position and orientation is 
manipulated as though it were attached to the hand directly.  
In Charade [2], freehand gestures were used to manipulate 
2-dimensional computerized objects in an augmented 
reality system. 
Conner et al [6] present a set of 3D widgets that allow for 
indirect interaction with virtual objects through a mediating 
virtual widget with clickable elements. For example, a 
translation widget would have virtual handles representing 
the three primary axes that could be dragged to move the 
corresponding virtual object in that direction. Many current 
applications (e.g., MAYA, 3D StudioMax) for 3D 
modeling and animation make extensive use of such 3D 
widgets since they can be easily operated with status-quo 
mouse & keyboards input. 
In this paper we will discuss the use of a two dimensional 
menu placed on the surface of the display. A similar idea 
was included in [14], where a 2D menu was embedded in 
the virtual environment. The menu they developed floats in 
3D space and includes various widgets such as radio 
buttons, sliders, and dials. The user interacts with the menu 
using a ray cursor, so that the user does not have to make 
large reaching movements.  In our implementation, we 
place the menu on the surface of the display so that the user 
can also directly reach and interact with it. In the JDCAD 
system [11] a ring menu was used for item selection, where 
the items were arranged along the circumference of a circle, 
and could be rotated until the item to be selected was 
directly in front of the user.   
In short, our literature survey reveals significant work in 
the general area of 3D interaction that we can build upon in 
our designs for interactive volumetric displays. However, 
little of this prior art is directly related to volumetric 
displays per se. In particular, volumetric displays provide a 
fixed display area around which to centre interactions, 
which make it fundamentally different from traditional 
virtual environments. Thus, interfaces specific to 
volumetric displays is a ripe area for further exploration. 



 

DESIGN PRINCIPLES 
Volumetric Display as the Sole Display  
As alluded to in the introduction, one could simply use a 
volumetric display as an output-only device to display 3D 
imagery that is created and manipulated using traditional 
2D computational environments. In this use scenario, the 
volumetric display will indeed enable users to better view a 
3D scene, but it will be a passive viewing experience, much 
like watching a movie. We believe that the enhanced 3D 
viewing capabilities of volumetric displays make it 
imperative that we begin to explore using it not only to 
view 3D images, but to also create and interact with those 
images directly on the volumetric display itself. Thus, in 
our exploration, we focus on how one might use the 
volumetric display as the exclusive platform for doing all 
manipulations with the displayed 3D data. It is critical that 
we understand the issues surrounding interaction with this 
class of display in isolation, before attempting to possibly 
integrate it into environments with multiple heterogeneous 
displays each with their own strengths and weaknesses. 
Multi-Viewpoint and Out-of-Viewpoint Operation  
On 2D or stereoscopic displays, users have a single 
viewpoint of the 3D scene at a given time. As a result, users 
have to rotate the scene frequently to view the parts 
occluded from the current viewpoint, or to enhance depth 
perception through motion. Head tracking can enable more 
fluid viewpoint changes, but only within the limited range 
of the display’s field of view. Furthermore, most interaction 
occurs relative to the current viewpoint. In contrast, 
volumetric displays allow the user to walk around it, or 
move their head appropriately, to dynamically adjust their 
viewpoint in a fluid, unobtrusive manner much like they 
would when looking a physical object in the real world. 
Furthermore, users can also reach around and interact with 
the 3D scene from all directions around the display, 
regardless of their current viewpoint (assuming a 
moderately sized display). These properties can allow for 
new interaction techniques beyond what is possible in other 
display environments and should be exploited to maximal 
benefit. We attempt to leverage these properties where 
appropriate in the design of our interaction techniques. 
Direct Touch and Gestural Input  
One can imagine using many possible input devices for 
interaction with volumetric displays. For example, in 
previous empirical work evaluating selection techniques on 
a volumetric display, we used a 6-dof tracker to control a 
3D point cursor [8]. However, the nature of the display, 
with 3D imagery floating within the enclosure, tends to 
evoke a strong tendency for people to touch it. Indeed, we 
have observed countless visitors to our lab attempting to 
point to parts of the displayed 3D scene by touching the 
surface of the display’s enclosure, or gesturing with their 
fingers over it. This anecdotal evidence suggests that direct 
touch and gesture based input could be particularly suited 
as an input modality to enable rich, high quality, 
interaction. We explore this style of input throughout our 
interface designs. 

SYSTEM HARDWARE & SOFTWARE 
Display Device 
We use a 3D volumetric display from Actuality Systems 
(www.actuality-systems.com). It generates a 10" spherical 
3D volumetric image by sweeping a semi-transparent 2D 
image plane around the up axis (Figure 2). A total of 198 
2D slices (images) of 768x768 pixels each are uniformly 
displayed around the center axis, resulting in a total of 116 
million voxels. The display has a refresh rate of 24Hz, and 
was driven by a 2 GHz Pentium4 computer on which our 
application software ran. The display can be viewed from 
any direction around the hemispheric dome, without 
requiring the user to wear any hardware. Thus, multiple 
people can view the imagery simultaneously, each from a 
different viewpoint, while maintaining the context of their 
shared physical surroundings. We note that the imagery in 
the current generation display cannot be rendered with full 
opacity. Furthermore, any sort of hidden-surface removal 
would require head-tracking for a single user, and would be 
impossible with multiple users. While this restriction to 
semi-transparent imagery can be a limitation for some 
applications, it does not hinder our ability to investigate 
user interface issues and we can indeed sometimes take 
advantage of this inherent transparency in our designs. 

 
Figure 2. Volumetric display 

Finger Tracking 
A Vicon motion tracking system (www.vicon.com) is used 
to track the positions of markers placed on the user’s 
fingers. The Vicon system uses several high-resolution 
cameras to track the 3D location of multiple passive 
reflective markers in real time. In addition to tracking the 
location of the markers in 3D space, the system can 
uniquely identify and label each marker according to its 
position on a user’s fingers. The 3D coordinates of these 
labeled markers can then be streamed in real-time to other 
applications. Our prototype uses four cameras for tracking, 
two of which are seen in Figure 1. In our current work, we 
track markers on the index fingers of both hands, and the 
thumb of the user’s dominant hand (Figure 3). 
We use the labeled marker data, in conjunction with 
knowledge of the precise topology and 3D spatial location 
of the display’s enclosure in the tracking volume, to 
simulate an enhanced touch sensitive display. Our system 



 

categorizes the precise positional information of the tips of 
the two index fingers and thumb into one of three discrete 
states: “down” – when touching the surface of the display’s 
enclosure, “hovering” – when within 6 cm of the surface, 
and “up” – when more than 6 cm from the surface. We also 
detect static postures and dynamic gestures of the fingers 
by examining the relative distance between the markers.  

 
Figure 3. Markers used for tracking finger positions.  

Multiple markers enable us to track bending of the index 
fingers, as well as finger tip position and orientation. 

Note that it is technically possible to make the display’s 
enclosure directly touch sensitive with current transparent 
resistive overlay technology, but the cost would likely be 
prohibitive given low production volumes. As such, we use 
this motion tracking system to simulate a touch sensitive 
display surface. Furthermore, this tracking system allows 
us to explore postural and gestural input that would not be 
possible with only a simple touch sensitive overlay. We 
also note that while current generation tracking technology 
requires markers for robust tracking, improvements to 
computer vision techniques may reduce or possibly even 
eliminate the need for markers in the future.. While the 
inconvenience of using markers does marginally detract 
from the overall usability of our prototype system, this 
tracking system allows us to explore advanced freehand 
interaction techniques today, before marker-free tracking 
becomes widely available. As such, this hardware setup 
should be viewed simply as an enabling technology for our 
prototype, rather than one that would be used in any future 
real implementation of our interface ideas.  
Software 
Our application software was written in C++ and OpenGL, 
with a custom OpenGL driver specific to the volumetric 
display. Marker tracking and labeling was performed using 
Vicon’s standard tracking software, and the data streamed 
in real-time to our application. The markers were tracked at 
120Hz. We could not detect any perceptible latency in the 
marker data or in the movement of virtual finger 
representations relative to the actual finger movements. 
COMMAND INPUT  
Given that we intend to perform all interaction on and 
around the display itself, and wanted to avoid using 
additional input devices like keyboards, we implemented 

two techniques to facilitate command input using the 
fingers: surface menus and a set of postures and gestures. 
Surface Menus 
Similar to interfaces for 2D touch screens, we display 
frequently used commands as buttons on the surface of the 
display. We call this surface menus (Figure 4). Because 
there is 3-10 cm gap between the edge of the display 
volume and its enclosing surface, these options could not 
be digitally displayed directly on the touchable enclosure. 
Since this gap will likely not be present in future 
implementations, we felt it was reasonable too simulate the 
buttons using pre-printed acetate overlays (Figure 4). We 
provide two surface menus, one for each hand. The buttons 
on the non-dominant hand’s surface menu are used for 
kinesthetically held transient modal commands. These 
provide context for the dominant hand’s interaction with 
the system while the non-dominant hand’s index finger is 
down on the appropriate button (much like the use of a 
“shift” key in a regular keyboard). The buttons on the 
dominant hand’s surface menu are for other frequently used 
commands, and are executed with a quick tap. 

 
Figure 4. Surface menus. Physical buttons taped onto the 
display’s surface can be tapped to execute a function or 

tapped-and-held to maintain a mode. 

When either index finger hovers over any surface menu 
button, a caption associated with its function is displayed to 
the user, similar to the bubble help in conventional GUIs .  
In our implementation, the locations of the surface menus 
were fixed. However, if such menus were to be displayed 
digitally, their location could be dynamically adjusted. It 
would be desirable to orient the menus relative to the user’s 
body position, such that they would always appear on either 
side of the user for easy access. We implement dynamic 
orientation for the button captions, such that the caption is 
always facing the user, regardless of the user’s position 
around the display. The user’s position is estimated by 
examining the position and orientation of their fingers. 
Postures and Gestures 
While surface menus provide a nice mechanism for 
command input, there are instances when it could be 
inconvenient to have to touch the surface menu buttons to 
invoke a command. For example, if the user is 



 

manipulating a virtual object, it may be easier to enter 
commands using other finger movements. We also wanted 
to experiment with more than one command input 
mechanism, to enable later determination of optimal 
solutions. Accordingly, we developed a set of hand 
postures and gestures which can be carried out on or off the 
surface of the display. We infer the set of postures based on 
the shape of the fingers, while the set of gestures is 
determined based on the dynamic characteristics of the 
fingers’ movement over time. Figure 5 illustrates this set of 
postures and gestures. The commands associated with each 
posture and gesture will be described as we progress 
through the paper explaining the various interaction 
techniques.  

 
Figure 5. Postures and gestures. (a) point posture: index 
finger points towards the display. (b) flat posture: index 

finger is parallel to display surface. (c) pinch posture: tips of 
index finger and thumb brought together. (d) curl posture: tip 

bent towards base of finger. (e) trigger gesture: thumb 
presses against index finger (f) scrub gesture: thumb scrubs 

along index finger in either direction. 

INTERACTION TECHNIQUES 
For interacting in three dimensions, we need to support a 
variety of basic operations such as file visualization and 
browsing, selection, translation, scaling, and rotation. The 
following techniques were developed in the context of a 3D 
model building application, but can be generalized to other 
volumetric display applications. 
SurfaceBrowser  
In order to allow for basic file operations of load, save, 
organize, copy, and delete we developed a simple 
file/object management mechanism called SurfaceBrowser 
(Figure 6). The SurfaceBrowser displays various objects by 
organizing them into cells of a 2D array. Four such arrays, 
or pages, are then projected around the entire inner surface 
of the display, allowing the user to easily interact with the 
objects by touching the surface of the enclosure directly 

above them. The pages either contain models or scenes. 
Models are primary shapes used in building more complex 
scenes. The contents of each cell rotate slowly to aid in 
their visualization. We have currently implemented display 
support only for 3D models and scenes since they are the 
primary data types of interest in our 3D model building 
application. However, support for other data types such as 
images could easily be implemented within the same 
SurfaceBrowser framework. 
While the SurfaceBrowser is displayed, it can be rotated by 
scrubbing the non-dominant hand’s index finger along the 
surface of the display. This feature allows the user to bring 
regions of interest closer to him/herself, although this is not 
strictly necessary in a volumetric display since the user 
could walk or move their head around the display to look at 
various parts of the SurfaceBrowser. In a sense, this 
rotation technique supports “lazy” operation, which may be 
desirable in some situations.  
A flat arrow cursor is displayed below the dominant hand’s 
index finger, which is used to perform basic operations 
with objects in the SurfaceBrowser. Touching the surface 
with this finger while the cursor is above an object (either 
model or scene) selects it, lifting the finger deselects it. 
While selected, an object can be moved from cell to cell by 
dragging within a page, or copied by dragging to another 
page. The object can also be dragged into a trash can area 
at the top of the display to delete it. A quick tap on any 
object opens it. When this occurs, the selected model or 
scene smoothly animates from its 2D form on the surface of 
the display, to its 3D shape at the center of the display. We 
use smooth animated transitions throughout our prototype 
to provide users with a sense of continuity as they move 
from action to action. 

 
Figure 6. SurfaceBrowser. The distortion at the centre of the 

display is an artifact of the physical display mechanism.    

Model Transformations  
Once a model has been opened, we allow for rotation, 
translation, and scaling. While we did explore simultaneous 
rotation and translation for six-degree of freedom 
manipulations, we limited the interactions to distinct modal 
operations to enhance precision. We now describe the 
interaction techniques that allow 3D transformations to be 
applied to the models.  



 

Rotate 
Rotation is initiated by touching the display with the 
dominant hand’s index finger. The finger is then dragged 
across the surface of the display, and this movement is 
transformed into rotation of the model, as if there were a 
stick connecting the finger to the model’s center (Figure 
7a,b). This provides two degrees of freedom of rotation. A 
third rotational degree of freedom is achieved by twisting 
the hand, while the index finger is still down. This rotates 
the model about the vector defined from the finger to the 
model (Figure 7c). Rotation stops when the finger is 
removed from the surface of the display. 
Note that we deliberately chose rotation axes that are 
defined by the display’s hemispheric surface and the user’s 
hands, in order to keep the mappings simple. Although our 
hemispheric volumetric display does have a well defined 
up-down axis, it does not have any inherent left-right or 
front-back axes. As such, although we do define a global 
three axis coordinate system (with admittedly arbitrary 
choices of left-right and front-back axes) that we use for 
snapping operations described later, we did not want to 
impose this global axes triad on the user for the basic 
transformation, particularly since the user could be 
performing these transformations while standing anywhere 
around the display.  

 

 

 
Figure 7. Rotating a model. (a, b) Moving finger across the 

surface rotates the model as though its centre was attached 
by a stick to the fingertip. (c) Twisting the hand about the 

fingertip rotates the model about the vector from its centre to 
the fingertip. 

Translate 
Translation is imitated by assuming a pinch posture (Figure 
5c) with the dominant hand. While pinched, moving the 
hand in any direction moves the model the same distance in 
that direction. The metaphor here is that of picking up an 
object with a pinch grip and moving it. When translating 
the model away from the user, it is possible that the user’s 

hand may collide with the display. Thus, we provided 
added functionality to translate the model towards or away 
from the user in a relative manner, accomplished through 
the scrub gesture (Figure 5f). The direction of the scrub 
gesture determines the direction of the model’s translation 
along the vector defined by the index finger. When the 
dominant hand leaves the pinch posture, and is not 
scrubbing, translation stops. Since entering or exiting the 
pinch posture can cause unwanted translations, we provide 
a clutching mechanism to freeze the model momentarily to 
ensure precision translations. This freezing action occurs 
whenever the non-dominant hand’s index finger is in the 
curl posture (Figure 5d). The metaphor is that of curling the 
fingers around an object to hold it still, as one might do in 
the physical world.  
Scale 
Unlike translation and rotation which are performed with a 
single finger, scaling is a bimanual technique. To scale a 
model, both index fingers are placed on and dragged along 
the surface of the display. Sliding the fingers further apart 
on the surface increases the scale, while sliding them 
together decreases it. The object is scaled uniformly along 
all dimensions. This is similar to the technique presented in 
[10] for scaling in a 2D drawing program. Scaling stops 
when the user lifts either finger from the surface.  
Visual Feedback for Transformations 
While performing any of the transformations, a colored 3D 
icon is drawn at the center of the model, indicating which 
transformation is currently being applied (Figure 8). The 
icons are displayed oriented towards the user’s current hand 
positions to facilitate viewing. If the transformation has not 
yet been initiated, the icon is white, indicating to the user 
that the posture of their hands is close to that required to 
begin the corresponding transformation. For example, if 
both of the user’s hands are close to touching the surface of 
the display, the scale icon will be displayed in white. Once 
both fingers make contact with the surface the widget will 
become colored. This provides a nice way to guide users 
into appropriate postures for transformation actions, and 
also to reduce accidental triggering of transformations. 

 
Figure 8. Visual feedback for transformations. (a) Rotate. (b) 

Translate. (c) Scale 

Constrained Transformations 
The rotate and translate transformations discussed allow 
users to simultaneously control three degrees of freedom. 
In most common 3D graphics applications, such 
transformations are limited to one or at most two degrees of 
freedom primarily because they are performed using 2D 
input devices within a two-dimensional perspective 
viewpoint. While allowing users to simultaneously move or 
rotate objects along three axes simultaneously on a 



 

volumetric display is very powerful, it is sometimes useful 
to constrain transformations to a particular axis for 
precision movements. To support this, we created a 
mechanism where users can add or remove axes to which 
subsequent transformations will be constrained.  
Axis Definition 
The constraint axis specification mode is entered and 
maintained while the non-dominant hand’s index finger is 
held on the “axis” surface menu button. While in axis mode 
the dominate hand can create, activate, or deactivate 
constraint axes. When in a pointing posture, a white 
constraint axis preview line is displayed as the finger 
hovers over the surface of the display. The position and 
orientation of the preview line matches the vector of the 
finger, so it appears as though it is a ray being emitted from 
the finger tip. If the preview line is close enough to one of 
the global primary axes, or the centre or object axes of any 
models in the scene, it will snap to that axis. This aids in 
precise positioning of the constraint axis. If the finger taps 
the surface while still in the pointing posture, the constraint 
axis will be added, and is displayed as a thick red line 
extending through the display (Figure 9). Tapping either 
end of the constraint axis will deactivate that constraint 
axis, and it will appear as a short white tick mark. Multiple 
deactivated constraint axes can exist at a time. The tick 
marks will appear as long as the non-dominant hand 
maintains the system in axis mode, and tapping any of them 
in the flat posture will activate that constraint axis. The 
active constraint axis is deactivated if another constraint 
axis is created or activated, so that only one constraint axis 
can be active at a time.  

 
Figure 9. Constraint axis. These can be placed arbitrarily by 
pointing to define the axis and touching the surface of the 

display to add it to the scene. 

Constrained Transformations 
If a constraint axis is active, then all transformations will be 
constrained to it. For rotation, only the component of the 
movement of the index finger that is perpendicular to the 
constraint axis is applied to the rotation of the active model. 
This causes the model to rotate about the defined axis. A 
large cylindrical widget is drawn perpendicular to the 
constraint axis, providing feedback for the user as to where 
their finger should be dragged for effective rotation. 
Similarly, when translating, only the component of 

movement parallel to the constraint axis is used. The 
translation is thus constrained to that axis. By default our 
scale function is a one degree of freedom operation, where 
objects are scaled uniformly along all dimensions. 
However, when a constraint axis is active, the scale 
operation is constrained to apply only along that axis. 
From Models to Scenes 
Now that the main interaction techniques for manipulating 
individual models have been described, we will discuss the 
techniques involved in combining multiple models to build 
up scenes.  
Add model 
Additional models can be added to the current scene by 
depressing the “Add Model” surface menu button with the 
non-dominant hand’s index finger. When this is done, the 
SurfaceBrowser is shown around the perimeter of the 
display, while the current scene continues to be rendered in 
the centre (Figure 10). As always, while the non-dominant 
hand’s finger remains down, it can be dragged across the 
surface to rotate the SurfaceBrowser, and a model is added 
to the scene by tapping it. The SurfaceBrowser disappears 
when a model is added, or when the non-dominant hand’s 
finger leaves the surface of the display.  

 
Figure 10. Adding additional models to the scene.  The 
surface browser allows context to be maintained while 

making a selection that affects the scene. 

Selection 
With multiple models in a scene, we must select which 
models are to be manipulated before performing any further 
transformations. We support model selections with a scene 
using a ray cursor [11]. In a recent (as yet unpublished) 
experiment, we found that a ray cursor was more effective 
than other techniques for a static selection task within a 
volumetric display. The ray cursor can be used by 
tapping-and-holding on a surface menu button with the 
non-dominant hand. A virtual “light ray” appears to emit 
from the user’s finger and is rendered as a yellow line on 
the volumetric display (Figure 11). When the ray intersects 
a model, the model is highlighted by changing color, and a 
trigger gesture (Figure 5e) is used to select or deselect it. 
Models turn blue once they are selected, as a visual 
indicator of their state. If the ray cursor intersects multiple 



 

objects, only one of them will be initially highlighted, but 
hand movements can be used to cycle through the 
possibilities. Moving the hand forward will highlight the 
model further from the hand, and moving the hand 
backwards will highlight the model closer to the hand. 
Subsequent actions affect only the selected models. 

 
Figure 11. Selection using a ray cursor. 

 
Figure 12. Snapping. (a) Purple marks indicate snapping of 
a vertex to a face. (b) White tick marks indicate snapping of 

parallel faces.  

Operations on Multiple Models 
The transformation techniques for single models described 
earlier can be used to simultaneously apply transformations 
to multiple selected models. When more than one model is 
selected, the centre of rotation, translation, and scaling 
operations is computed as the average of the centers of all 
selected models. The relative positions of the selected 
models remain unchanged by any transformation. 
Multiple objects can be grouped together by pressing the 
“Group/Ungroup” surface menu button when they are 
selected. Once a group has been formed, selecting or 
deselecting a model selects or deselects its entire group. 
Objects can subsequently be ungrouped by pressing the 
“Group/Ungroup” button while a group is selected.  
Single models or groups of models, once selected, can be 
deleted from a scene by pressing the “Delete” button.  

Snapping/Collision 
To aid in building complex scenes, the system supports 
collision detection and snapping between models. By 
default this is disabled, but by pressing the “Snap” surface 
menu button, collision detection and snapping are enabled. 
When translating, objects cannot intersect one another. 
Instead, the vertices of the moving object will snap to the 
face of any stationary object which it intersects. Purple 
marks are displayed to indicate the point at which a vertex 
snaps to a face (Figure 12a). If the model is then translated 
to any side of the face, it will snap to the edge. Objects can 
also snap while rotating. The object will snap such that the 
normal of any of its faces matches the normal of any 
nearby face. A small tick mark is displayed through parallel 
snapped faces to indicate that snapping has occurred. 
(Figure 12b). 
DISCUSSION  
In our research, we uncovered several interesting principles 
and issues unique to volumetric displays: 
• True 3D displays remove a layer of abstraction between 

input and display space, and thus tend to better afford 
gestural interactions. 

• Because the display space is limited by the physical 
enclosure, all objects are within arm’s reach. As a result, 
traditional 3D interaction techniques don’t necessarily 
apply, necessitating the development of new techniques. 

• Given that the display area is within an enclosure, 
gestures on and above its surface can be quite directly 
mapped to actions within. 

• Multiple users can view the scene simultaneously while 
maintaining context of their shared physical 
surroundings, allowing for richer multi-user experiences. 

• With current display technology, head-tracking would be 
required for hidden surface removal with one user, and 
impossible with multiple users. 

The interaction techniques we developed make maximal 
use of the three dimensional nature of the display and input 
system. While the direct finger tracking allows users to 
perform high degree of freedom operations with multiple 
fingers, the display technology allows users to accurately 
visualize the virtual 3D manipulations with excellent depth 
perception. Taken together, this allows for interesting 
interactions not possible in traditional input and display 
combinations. For example, free-form transformations 
allow for simultaneous three degree of freedom translation 
and rotation, allowing quick and accurate object placement 
in a 3D environment without the need for constant 
viewpoint rotations. Combining this with snapping and 
collision detection, users can quickly build-up 3D scenes 
from a set of primary models (e.g., Figure 13). To improve 
precision, users can quickly define arbitrary constraint 
axes. Not only can the constraint axis be defined from any 
viewpoint, but it can also be adequately visualized, without 
the need for adjusting a camera position as would be 
required in traditional 3D virtual environments. 



 

 

 
Figure 13. A “table setting” scene built using our system. 

(top) The scene rendered in high quality to show the precise 
composition of its parts. (bottom) Photograph of the scene 

as it is displayed in the volumetric display. 

While some of the interaction techniques which we 
implemented have been adapted from research on virtual 
reality systems, others have been designed specifically for 
volumetric displays. For example, the use of a ray cursor 
has been demonstrated previously, but we extended the 
technique to using the index finger to directly control the 
ray’s orientation and position as well as using the thumb to 
perform a trigger gesture to confirm selections. Similarly, 
we extended previous work on virtual rotations to a new 
technique that enables precise rotations about all three axes 
simultaneously by moving the fingers directly on the 
surface of the display. 
While the model manipulation techniques make use of up 
to three degrees of freedom of input, our mechanism for 
selecting between models and scenes, the SurfaceBrowser, 
is constrained to the inner surface of the volumetric display.  
This, in effect, creates a two dimensional viewing plane, 
wrapped around the inside surface. We deliberately 
designed the SurfaceBrowser in this manner, rather than 
making use of the full 3D display volume, because it frees 
up the internal display area for simultaneously viewing 
models selected from the SurfaceBrowser. Thus, a user is 
able to view their current work area and make selections 
from a menu that affects that area, preserving context.  
Because our volumetric display has a non-uniform gap 
between the surface and the rendered 3D volumetric image, 
we felt it was necessary to add a cursor icon to give the 

user feedback as to where their finger position was being 
mapped into the surface browser.  As volumetric display 
technology improves, this gap will quite likely be reduced, 
and the cursor could be removed from the SurfaceBrowser, 
resulting in a sense of even more direct interaction. 
It is important to note that although the techniques we 
developed were presented in the context of a 3D model 
builder, they are equally applicable to any interactive 3D 
application which uses a volumetric display. In a sense, our 
techniques are 3D analogues of the standard WIMP 
techniques used on 2D desktops that work reasonably well 
for a broad range of 2D applications. For example, the 
SurfaceBrowser can be thought of as a standard file 
browser for managing any kind of 3D, or even 2D, data on 
a volumetric display.  
CONCLUSIONS and FUTURE DIRECTIONS 
We have presented a suite of gestural interaction techniques 
for use with a 3D volumetric display. To allow for high 
fidelity direct user input, we demonstrated the use of a 
real-time motion capture system to simulate a 
touch-sensitive display surface, detect hover just over the 
surface of the display, and track user hand positions when 
away from the display. We believe that this is an interesting 
use of motion tracking systems, departing from its 
traditional use in offline motion capture to provide 
movement data for animation, games, and human 
movement analysis. While the techniques presented here 
can form the basis for highly interactive use of such 
displays, there are clearly many more interesting research 
challenges that remain to be explored.  
With improvements to the display technology, it would 
likely be possible to display surfaced and textured models.  
When such rendering is available it would be of interest to 
explore more advanced object manipulations. For example, 
our existing techniques for directly interacting with the 
display surface could be built upon to perform various 
sculpting operations. Manipulations used when working 
with physical clay such as pulling, pushing, squeezing, and 
stretching could be adapted to gestural interaction on the 
display surface to perform various surface deformations on 
virtual models.   
To allow for such advanced gestures, it may be useful to 
move from tracking the thumb and two index fingers which 
we implemented in our system, to full tracking of all 
fingers and the palm of both hands. This would clearly 
increase the possible set of postures and gestures.  
However there would be an obvious trade off.  The small 
and simple gesture set which we developed allowed for a 
simple fluid interface requiring relatively little prior 
training of the few users who have tried the system. 
Increasing the complexity of the gesture set would require 
explicit mechanisms to reveal and teach novice users about 
the various possible interface actions. We plan to conduct 
more formal usability testing of our gesture set and 
interaction techniques in the near future. 



 

Lastly, the display’s 360° field of view makes it an obvious 
platform for exploring collaborative multi-user interaction 
in 3D environments.  Given that users would not need to 
wear head mounted displays or special glasses, they would 
be able to view the three dimensional data while 
maintaining the context of their surrounding environment 
and other users, facilitating human-human communication 
in conjunction with human-computer interaction. However, 
because the work area is a shared three-dimensional 
display, unique issues arise when multiple users attempt to 
share the space.  For example, at what orientation should 
text be displayed?  What kinds of strategies can be applied 
to allow two or more people to work together using gestural 
interaction techniques on such a display?  The rich 
literature on collaborative computing will provide 
guidance, but these prior ideas will have to be adapted and 
refined for appropriate use with this new display 
technology, a challenge we believe is worthy of further 
exploration in the future. 
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