

Multi-Finger Gestural Interaction with 3D Volumetric Displays
Tovi Grossman, Daniel Wigdor, Ravin Balakrishnan

Department of Computer Science
University of Toronto

tovi | dwigdor | ravin @dgp.toronto.edu
www.dgp.toronto.edu

ABSTRACT
Volumetric displays provide interesting opportunities and
challenges for 3D interaction and visualization, particularly
when used in a highly interactive manner. We explore this
area through the design and implementation of techniques
for interactive direct manipulation of objects with a 3D
volumetric display. Motion tracking of the user's fingers
provides for direct gestural interaction with the virtual
objects, through manipulations on and around the display's
hemispheric enclosure. Our techniques leverage the unique
features of volumetric displays, including a 360° viewing
volume that enables manipulation from any viewpoint
around the display, as well as natural and accurate
perception of true depth information in the displayed 3D
scene. We demonstrate our techniques within a prototype
3D geometric model building application.
Categories and Subject Descriptors: H.5.2 [User
Interfaces]: Interaction styles; I.3.6 [Methodology and
Techniques]: Interaction techniques.
Additional Keywords and Phrases: volumetric display,
3D interaction, multi-finger and two-handed gestural input.
INTRODUCTION
Viewing imagery on volumetric displays [7, 12], which
generate true volumetric 3D images by actually
illuminating points in 3D space, is akin to viewing physical
objects in the real world. Viewers can use their inherent
physiological mechanisms for depth perception to gain a
richer, more accurate understanding of the virtual 3D scene.
These displays typically have a 360° field of view, and the
user does not have to wear hardware such as shutter glasses
or head-trackers. As such, they are a promising alternative
to traditional display systems for viewing in 3D.
Although these displays are now commercially available
(e.g., www.actuality-systems.com), current applications
tend to use them as a non-interactive output-only display
device, much like one would use a printer. In order to fully
leverage the unique features of these displays, however, it
would be desirable if one could directly interact with and
manipulate the 3D data being displayed. It should be noted
that the vast literature on interaction within 3D virtual
reality environments is clearly relevant, and we do indeed
draw upon this body of previous work. However,

volumetric displays present interesting challenges which
demand special attention, such that a user interface
appropriate for a virtual reality environment may not work
well on a volumetric display, and vice versa. For example,
in a virtual reality environment, virtual objects could be at a
very large distance from the user’s virtual position, whereas
all virtual objects in a volumetric display are always within
arm’s reach of a user. However, despite this apparent
accessibility, the imagery inside a volumetric display is
enclosed by a protective transparent enclosure, which
means the user cannot reach in and grab objects, whereas in
most virtual reality environments, the user and their hands
are often (virtually) inside the environment. These
differences can significantly impact the usability of an
interface, making it worthwhile to investigate new
interaction styles specifically suited to volumetric displays.
In this paper, we investigate interaction techniques for
volumetric display interfaces, through the development of
an interactive 3D geometric model building application.
While this application area itself presents many interesting
challenges, our focus is on the interaction techniques that
are likely generalizable to interactive applications for other
domains. We explore a very direct style of interaction
where the user interacts with the virtual data using direct
finger manipulations on and around the enclosure
surrounding the displayed 3D volumetric image. In our
implementation, the enclosure is a hemisphere (Figure 1). If
the enclosure was instead a cuboid or cylinder [7], some of
the mappings we use may need modification, but the
overall ideas would remain applicable.

Figure 1. User working with a volumetric display, with finger
input tracked using a camera-based motion tracking system.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

RELATED WORK
Much research done on interactive 3D virtual environments
to date has relied on stereoscopic displays, either
immersive VR systems [5], or non-immersive fish tank VR
systems using LCD shutter stereo-glasses [18-20].
Unfortunately, unlike volumetric displays that generate true
3D voxels, these displays can create a conflict between the
two mechanisms that give humans stereoscopic vision −
convergence and accommodation (see [16] for a review of
human stereoscopic vision). By providing two different
images for each eye, stereoscopic displays satisfy
convergence, but the single image plane is insufficient for
accommodation. The result is a tendency for some users to
experience nausea and dizziness [13]. Volumetric displays
also do not require the use of head tracking, and its
associated problems with lag and poor accuracy, that is
often used with stereo displays to provide motion parallax.
From a technology viewpoint, volumetric displays can be
very broadly classified into three categories. Holographic
displays [12] generate 3D images by using microscopic
patterns on a physical imaging plane to control the
diffraction of light. Static techniques [7] create emissive
voxels by directly exciting points within a physical 3D
substrate. Swept volume techniques spin a 2D time-varying
image about an axis at a sufficiently high speed to enable
the human viewer’s visual system to perceive a 3D
volumetric image by fusing together the successive 2D
images into a 3D whole. The technical details of these
display implementations are outside the scope of our paper
and we refer the reader to [7, 12] for more details.
Given that volumetric displays have not been easily
available until recently, there has been relatively little
research on how to use such displays effectively in an
interactive manner. A speculative paper [1] discusses
possible interaction scenarios for volumetric displays, using
wizard-of-oz mock-up prototypes to demonstrate various
techniques for selection, displaying text and menus, and
manipulating objects. However, they did not have or make
use of a real volumetric display and as such did not
demonstrate any working implementations of their ideas.
From an interaction perspective, the most relevant prior art
is in the virtual reality community, that has long explored
interactive 3D environments, albeit using various 2D
display technologies. This includes work on virtual object
selection, virtual object manipulation, menu and command
selection, and various 3D widgets.
One of the most basic tasks in any application is object
selection. For applications in 3D environments, it may
seem obvious to implement selection based on the position
of a 3D point cursor [9, 14, 15, 17]. However this requires a
user to position the cursor, and thus their hand, in a specific
3D location. Even by altering the mappings between the
hand and cursor to reduce the necessary movements[17], it
can still be a tedious task to perform repeatedly [3, 4]. The
main alternative to using a point cursor is the ray casting
selection cursor [11], where a virtual ray is emitted from

the user’s hand position, so the user has control over the
start point and orientation of the ray, much like a physical
laser pointer. The first object it intersects is typically
selected. Because multiple objects could be intersected, ray
casting can present ambiguities not seen with a point
cursor. To alleviate this, Hinckley et al [9] suggest that the
ray casting technique could be augmented with a
mechanism for cycling through the set of all ray-object
intersection points. We use a similar approach for object
selection in our application.
In many virtual environments, (e.g., [11]), objects are
manipulated using a 6-dof tracker. This approach allows for
straightforward mappings where the position and
orientation of virtual objects correspond directly to the
tracker’s movements. Others [14] have used direct gestural
interaction where hand movements are mapped directly to
object movement. The HOMER technique [3] combines
ray-casting selection with subsequent direct manipulation:
after an object is selected, its position and orientation is
manipulated as though it were attached to the hand directly.
In Charade [2], freehand gestures were used to manipulate
2-dimensional computerized objects in an augmented
reality system.
Conner et al [6] present a set of 3D widgets that allow for
indirect interaction with virtual objects through a mediating
virtual widget with clickable elements. For example, a
translation widget would have virtual handles representing
the three primary axes that could be dragged to move the
corresponding virtual object in that direction. Many current
applications (e.g., MAYA, 3D StudioMax) for 3D
modeling and animation make extensive use of such 3D
widgets since they can be easily operated with status-quo
mouse & keyboards input.
In this paper we will discuss the use of a two dimensional
menu placed on the surface of the display. A similar idea
was included in [14], where a 2D menu was embedded in
the virtual environment. The menu they developed floats in
3D space and includes various widgets such as radio
buttons, sliders, and dials. The user interacts with the menu
using a ray cursor, so that the user does not have to make
large reaching movements. In our implementation, we
place the menu on the surface of the display so that the user
can also directly reach and interact with it. In the JDCAD
system [11] a ring menu was used for item selection, where
the items were arranged along the circumference of a circle,
and could be rotated until the item to be selected was
directly in front of the user.
In short, our literature survey reveals significant work in
the general area of 3D interaction that we can build upon in
our designs for interactive volumetric displays. However,
little of this prior art is directly related to volumetric
displays per se. In particular, volumetric displays provide a
fixed display area around which to centre interactions,
which make it fundamentally different from traditional
virtual environments. Thus, interfaces specific to
volumetric displays is a ripe area for further exploration.

DESIGN PRINCIPLES
Volumetric Display as the Sole Display
As alluded to in the introduction, one could simply use a
volumetric display as an output-only device to display 3D
imagery that is created and manipulated using traditional
2D computational environments. In this use scenario, the
volumetric display will indeed enable users to better view a
3D scene, but it will be a passive viewing experience, much
like watching a movie. We believe that the enhanced 3D
viewing capabilities of volumetric displays make it
imperative that we begin to explore using it not only to
view 3D images, but to also create and interact with those
images directly on the volumetric display itself. Thus, in
our exploration, we focus on how one might use the
volumetric display as the exclusive platform for doing all
manipulations with the displayed 3D data. It is critical that
we understand the issues surrounding interaction with this
class of display in isolation, before attempting to possibly
integrate it into environments with multiple heterogeneous
displays each with their own strengths and weaknesses.
Multi-Viewpoint and Out-of-Viewpoint Operation
On 2D or stereoscopic displays, users have a single
viewpoint of the 3D scene at a given time. As a result, users
have to rotate the scene frequently to view the parts
occluded from the current viewpoint, or to enhance depth
perception through motion. Head tracking can enable more
fluid viewpoint changes, but only within the limited range
of the display’s field of view. Furthermore, most interaction
occurs relative to the current viewpoint. In contrast,
volumetric displays allow the user to walk around it, or
move their head appropriately, to dynamically adjust their
viewpoint in a fluid, unobtrusive manner much like they
would when looking a physical object in the real world.
Furthermore, users can also reach around and interact with
the 3D scene from all directions around the display,
regardless of their current viewpoint (assuming a
moderately sized display). These properties can allow for
new interaction techniques beyond what is possible in other
display environments and should be exploited to maximal
benefit. We attempt to leverage these properties where
appropriate in the design of our interaction techniques.
Direct Touch and Gestural Input
One can imagine using many possible input devices for
interaction with volumetric displays. For example, in
previous empirical work evaluating selection techniques on
a volumetric display, we used a 6-dof tracker to control a
3D point cursor [8]. However, the nature of the display,
with 3D imagery floating within the enclosure, tends to
evoke a strong tendency for people to touch it. Indeed, we
have observed countless visitors to our lab attempting to
point to parts of the displayed 3D scene by touching the
surface of the display’s enclosure, or gesturing with their
fingers over it. This anecdotal evidence suggests that direct
touch and gesture based input could be particularly suited
as an input modality to enable rich, high quality,
interaction. We explore this style of input throughout our
interface designs.

SYSTEM HARDWARE & SOFTWARE
Display Device
We use a 3D volumetric display from Actuality Systems
(www.actuality-systems.com). It generates a 10" spherical
3D volumetric image by sweeping a semi-transparent 2D
image plane around the up axis (Figure 2). A total of 198
2D slices (images) of 768x768 pixels each are uniformly
displayed around the center axis, resulting in a total of 116
million voxels. The display has a refresh rate of 24Hz, and
was driven by a 2 GHz Pentium4 computer on which our
application software ran. The display can be viewed from
any direction around the hemispheric dome, without
requiring the user to wear any hardware. Thus, multiple
people can view the imagery simultaneously, each from a
different viewpoint, while maintaining the context of their
shared physical surroundings. We note that the imagery in
the current generation display cannot be rendered with full
opacity. Furthermore, any sort of hidden-surface removal
would require head-tracking for a single user, and would be
impossible with multiple users. While this restriction to
semi-transparent imagery can be a limitation for some
applications, it does not hinder our ability to investigate
user interface issues and we can indeed sometimes take
advantage of this inherent transparency in our designs.

Figure 2. Volumetric display

Finger Tracking
A Vicon motion tracking system (www.vicon.com) is used
to track the positions of markers placed on the user’s
fingers. The Vicon system uses several high-resolution
cameras to track the 3D location of multiple passive
reflective markers in real time. In addition to tracking the
location of the markers in 3D space, the system can
uniquely identify and label each marker according to its
position on a user’s fingers. The 3D coordinates of these
labeled markers can then be streamed in real-time to other
applications. Our prototype uses four cameras for tracking,
two of which are seen in Figure 1. In our current work, we
track markers on the index fingers of both hands, and the
thumb of the user’s dominant hand (Figure 3).
We use the labeled marker data, in conjunction with
knowledge of the precise topology and 3D spatial location
of the display’s enclosure in the tracking volume, to
simulate an enhanced touch sensitive display. Our system

categorizes the precise positional information of the tips of
the two index fingers and thumb into one of three discrete
states: “down” – when touching the surface of the display’s
enclosure, “hovering” – when within 6 cm of the surface,
and “up” – when more than 6 cm from the surface. We also
detect static postures and dynamic gestures of the fingers
by examining the relative distance between the markers.

Figure 3. Markers used for tracking finger positions.

Multiple markers enable us to track bending of the index
fingers, as well as finger tip position and orientation.

Note that it is technically possible to make the display’s
enclosure directly touch sensitive with current transparent
resistive overlay technology, but the cost would likely be
prohibitive given low production volumes. As such, we use
this motion tracking system to simulate a touch sensitive
display surface. Furthermore, this tracking system allows
us to explore postural and gestural input that would not be
possible with only a simple touch sensitive overlay. We
also note that while current generation tracking technology
requires markers for robust tracking, improvements to
computer vision techniques may reduce or possibly even
eliminate the need for markers in the future.. While the
inconvenience of using markers does marginally detract
from the overall usability of our prototype system, this
tracking system allows us to explore advanced freehand
interaction techniques today, before marker-free tracking
becomes widely available. As such, this hardware setup
should be viewed simply as an enabling technology for our
prototype, rather than one that would be used in any future
real implementation of our interface ideas.
Software
Our application software was written in C++ and OpenGL,
with a custom OpenGL driver specific to the volumetric
display. Marker tracking and labeling was performed using
Vicon’s standard tracking software, and the data streamed
in real-time to our application. The markers were tracked at
120Hz. We could not detect any perceptible latency in the
marker data or in the movement of virtual finger
representations relative to the actual finger movements.
COMMAND INPUT
Given that we intend to perform all interaction on and
around the display itself, and wanted to avoid using
additional input devices like keyboards, we implemented

two techniques to facilitate command input using the
fingers: surface menus and a set of postures and gestures.
Surface Menus
Similar to interfaces for 2D touch screens, we display
frequently used commands as buttons on the surface of the
display. We call this surface menus (Figure 4). Because
there is 3-10 cm gap between the edge of the display
volume and its enclosing surface, these options could not
be digitally displayed directly on the touchable enclosure.
Since this gap will likely not be present in future
implementations, we felt it was reasonable too simulate the
buttons using pre-printed acetate overlays (Figure 4). We
provide two surface menus, one for each hand. The buttons
on the non-dominant hand’s surface menu are used for
kinesthetically held transient modal commands. These
provide context for the dominant hand’s interaction with
the system while the non-dominant hand’s index finger is
down on the appropriate button (much like the use of a
“shift” key in a regular keyboard). The buttons on the
dominant hand’s surface menu are for other frequently used
commands, and are executed with a quick tap.

Figure 4. Surface menus. Physical buttons taped onto the
display’s surface can be tapped to execute a function or

tapped-and-held to maintain a mode.

When either index finger hovers over any surface menu
button, a caption associated with its function is displayed to
the user, similar to the bubble help in conventional GUIs .
In our implementation, the locations of the surface menus
were fixed. However, if such menus were to be displayed
digitally, their location could be dynamically adjusted. It
would be desirable to orient the menus relative to the user’s
body position, such that they would always appear on either
side of the user for easy access. We implement dynamic
orientation for the button captions, such that the caption is
always facing the user, regardless of the user’s position
around the display. The user’s position is estimated by
examining the position and orientation of their fingers.
Postures and Gestures
While surface menus provide a nice mechanism for
command input, there are instances when it could be
inconvenient to have to touch the surface menu buttons to
invoke a command. For example, if the user is

manipulating a virtual object, it may be easier to enter
commands using other finger movements. We also wanted
to experiment with more than one command input
mechanism, to enable later determination of optimal
solutions. Accordingly, we developed a set of hand
postures and gestures which can be carried out on or off the
surface of the display. We infer the set of postures based on
the shape of the fingers, while the set of gestures is
determined based on the dynamic characteristics of the
fingers’ movement over time. Figure 5 illustrates this set of
postures and gestures. The commands associated with each
posture and gesture will be described as we progress
through the paper explaining the various interaction
techniques.

Figure 5. Postures and gestures. (a) point posture: index
finger points towards the display. (b) flat posture: index

finger is parallel to display surface. (c) pinch posture: tips of
index finger and thumb brought together. (d) curl posture: tip

bent towards base of finger. (e) trigger gesture: thumb
presses against index finger (f) scrub gesture: thumb scrubs

along index finger in either direction.

INTERACTION TECHNIQUES
For interacting in three dimensions, we need to support a
variety of basic operations such as file visualization and
browsing, selection, translation, scaling, and rotation. The
following techniques were developed in the context of a 3D
model building application, but can be generalized to other
volumetric display applications.
SurfaceBrowser
In order to allow for basic file operations of load, save,
organize, copy, and delete we developed a simple
file/object management mechanism called SurfaceBrowser
(Figure 6). The SurfaceBrowser displays various objects by
organizing them into cells of a 2D array. Four such arrays,
or pages, are then projected around the entire inner surface
of the display, allowing the user to easily interact with the
objects by touching the surface of the enclosure directly

above them. The pages either contain models or scenes.
Models are primary shapes used in building more complex
scenes. The contents of each cell rotate slowly to aid in
their visualization. We have currently implemented display
support only for 3D models and scenes since they are the
primary data types of interest in our 3D model building
application. However, support for other data types such as
images could easily be implemented within the same
SurfaceBrowser framework.
While the SurfaceBrowser is displayed, it can be rotated by
scrubbing the non-dominant hand’s index finger along the
surface of the display. This feature allows the user to bring
regions of interest closer to him/herself, although this is not
strictly necessary in a volumetric display since the user
could walk or move their head around the display to look at
various parts of the SurfaceBrowser. In a sense, this
rotation technique supports “lazy” operation, which may be
desirable in some situations.
A flat arrow cursor is displayed below the dominant hand’s
index finger, which is used to perform basic operations
with objects in the SurfaceBrowser. Touching the surface
with this finger while the cursor is above an object (either
model or scene) selects it, lifting the finger deselects it.
While selected, an object can be moved from cell to cell by
dragging within a page, or copied by dragging to another
page. The object can also be dragged into a trash can area
at the top of the display to delete it. A quick tap on any
object opens it. When this occurs, the selected model or
scene smoothly animates from its 2D form on the surface of
the display, to its 3D shape at the center of the display. We
use smooth animated transitions throughout our prototype
to provide users with a sense of continuity as they move
from action to action.

Figure 6. SurfaceBrowser. The distortion at the centre of the

display is an artifact of the physical display mechanism.

Model Transformations
Once a model has been opened, we allow for rotation,
translation, and scaling. While we did explore simultaneous
rotation and translation for six-degree of freedom
manipulations, we limited the interactions to distinct modal
operations to enhance precision. We now describe the
interaction techniques that allow 3D transformations to be
applied to the models.

Rotate
Rotation is initiated by touching the display with the
dominant hand’s index finger. The finger is then dragged
across the surface of the display, and this movement is
transformed into rotation of the model, as if there were a
stick connecting the finger to the model’s center (Figure
7a,b). This provides two degrees of freedom of rotation. A
third rotational degree of freedom is achieved by twisting
the hand, while the index finger is still down. This rotates
the model about the vector defined from the finger to the
model (Figure 7c). Rotation stops when the finger is
removed from the surface of the display.
Note that we deliberately chose rotation axes that are
defined by the display’s hemispheric surface and the user’s
hands, in order to keep the mappings simple. Although our
hemispheric volumetric display does have a well defined
up-down axis, it does not have any inherent left-right or
front-back axes. As such, although we do define a global
three axis coordinate system (with admittedly arbitrary
choices of left-right and front-back axes) that we use for
snapping operations described later, we did not want to
impose this global axes triad on the user for the basic
transformation, particularly since the user could be
performing these transformations while standing anywhere
around the display.

Figure 7. Rotating a model. (a, b) Moving finger across the

surface rotates the model as though its centre was attached
by a stick to the fingertip. (c) Twisting the hand about the

fingertip rotates the model about the vector from its centre to
the fingertip.

Translate
Translation is imitated by assuming a pinch posture (Figure
5c) with the dominant hand. While pinched, moving the
hand in any direction moves the model the same distance in
that direction. The metaphor here is that of picking up an
object with a pinch grip and moving it. When translating
the model away from the user, it is possible that the user’s

hand may collide with the display. Thus, we provided
added functionality to translate the model towards or away
from the user in a relative manner, accomplished through
the scrub gesture (Figure 5f). The direction of the scrub
gesture determines the direction of the model’s translation
along the vector defined by the index finger. When the
dominant hand leaves the pinch posture, and is not
scrubbing, translation stops. Since entering or exiting the
pinch posture can cause unwanted translations, we provide
a clutching mechanism to freeze the model momentarily to
ensure precision translations. This freezing action occurs
whenever the non-dominant hand’s index finger is in the
curl posture (Figure 5d). The metaphor is that of curling the
fingers around an object to hold it still, as one might do in
the physical world.
Scale
Unlike translation and rotation which are performed with a
single finger, scaling is a bimanual technique. To scale a
model, both index fingers are placed on and dragged along
the surface of the display. Sliding the fingers further apart
on the surface increases the scale, while sliding them
together decreases it. The object is scaled uniformly along
all dimensions. This is similar to the technique presented in
[10] for scaling in a 2D drawing program. Scaling stops
when the user lifts either finger from the surface.
Visual Feedback for Transformations
While performing any of the transformations, a colored 3D
icon is drawn at the center of the model, indicating which
transformation is currently being applied (Figure 8). The
icons are displayed oriented towards the user’s current hand
positions to facilitate viewing. If the transformation has not
yet been initiated, the icon is white, indicating to the user
that the posture of their hands is close to that required to
begin the corresponding transformation. For example, if
both of the user’s hands are close to touching the surface of
the display, the scale icon will be displayed in white. Once
both fingers make contact with the surface the widget will
become colored. This provides a nice way to guide users
into appropriate postures for transformation actions, and
also to reduce accidental triggering of transformations.

Figure 8. Visual feedback for transformations. (a) Rotate. (b)

Translate. (c) Scale

Constrained Transformations
The rotate and translate transformations discussed allow
users to simultaneously control three degrees of freedom.
In most common 3D graphics applications, such
transformations are limited to one or at most two degrees of
freedom primarily because they are performed using 2D
input devices within a two-dimensional perspective
viewpoint. While allowing users to simultaneously move or
rotate objects along three axes simultaneously on a

volumetric display is very powerful, it is sometimes useful
to constrain transformations to a particular axis for
precision movements. To support this, we created a
mechanism where users can add or remove axes to which
subsequent transformations will be constrained.
Axis Definition
The constraint axis specification mode is entered and
maintained while the non-dominant hand’s index finger is
held on the “axis” surface menu button. While in axis mode
the dominate hand can create, activate, or deactivate
constraint axes. When in a pointing posture, a white
constraint axis preview line is displayed as the finger
hovers over the surface of the display. The position and
orientation of the preview line matches the vector of the
finger, so it appears as though it is a ray being emitted from
the finger tip. If the preview line is close enough to one of
the global primary axes, or the centre or object axes of any
models in the scene, it will snap to that axis. This aids in
precise positioning of the constraint axis. If the finger taps
the surface while still in the pointing posture, the constraint
axis will be added, and is displayed as a thick red line
extending through the display (Figure 9). Tapping either
end of the constraint axis will deactivate that constraint
axis, and it will appear as a short white tick mark. Multiple
deactivated constraint axes can exist at a time. The tick
marks will appear as long as the non-dominant hand
maintains the system in axis mode, and tapping any of them
in the flat posture will activate that constraint axis. The
active constraint axis is deactivated if another constraint
axis is created or activated, so that only one constraint axis
can be active at a time.

Figure 9. Constraint axis. These can be placed arbitrarily by
pointing to define the axis and touching the surface of the

display to add it to the scene.

Constrained Transformations
If a constraint axis is active, then all transformations will be
constrained to it. For rotation, only the component of the
movement of the index finger that is perpendicular to the
constraint axis is applied to the rotation of the active model.
This causes the model to rotate about the defined axis. A
large cylindrical widget is drawn perpendicular to the
constraint axis, providing feedback for the user as to where
their finger should be dragged for effective rotation.
Similarly, when translating, only the component of

movement parallel to the constraint axis is used. The
translation is thus constrained to that axis. By default our
scale function is a one degree of freedom operation, where
objects are scaled uniformly along all dimensions.
However, when a constraint axis is active, the scale
operation is constrained to apply only along that axis.
From Models to Scenes
Now that the main interaction techniques for manipulating
individual models have been described, we will discuss the
techniques involved in combining multiple models to build
up scenes.
Add model
Additional models can be added to the current scene by
depressing the “Add Model” surface menu button with the
non-dominant hand’s index finger. When this is done, the
SurfaceBrowser is shown around the perimeter of the
display, while the current scene continues to be rendered in
the centre (Figure 10). As always, while the non-dominant
hand’s finger remains down, it can be dragged across the
surface to rotate the SurfaceBrowser, and a model is added
to the scene by tapping it. The SurfaceBrowser disappears
when a model is added, or when the non-dominant hand’s
finger leaves the surface of the display.

Figure 10. Adding additional models to the scene. The
surface browser allows context to be maintained while

making a selection that affects the scene.

Selection
With multiple models in a scene, we must select which
models are to be manipulated before performing any further
transformations. We support model selections with a scene
using a ray cursor [11]. In a recent (as yet unpublished)
experiment, we found that a ray cursor was more effective
than other techniques for a static selection task within a
volumetric display. The ray cursor can be used by
tapping-and-holding on a surface menu button with the
non-dominant hand. A virtual “light ray” appears to emit
from the user’s finger and is rendered as a yellow line on
the volumetric display (Figure 11). When the ray intersects
a model, the model is highlighted by changing color, and a
trigger gesture (Figure 5e) is used to select or deselect it.
Models turn blue once they are selected, as a visual
indicator of their state. If the ray cursor intersects multiple

objects, only one of them will be initially highlighted, but
hand movements can be used to cycle through the
possibilities. Moving the hand forward will highlight the
model further from the hand, and moving the hand
backwards will highlight the model closer to the hand.
Subsequent actions affect only the selected models.

Figure 11. Selection using a ray cursor.

Figure 12. Snapping. (a) Purple marks indicate snapping of
a vertex to a face. (b) White tick marks indicate snapping of

parallel faces.

Operations on Multiple Models
The transformation techniques for single models described
earlier can be used to simultaneously apply transformations
to multiple selected models. When more than one model is
selected, the centre of rotation, translation, and scaling
operations is computed as the average of the centers of all
selected models. The relative positions of the selected
models remain unchanged by any transformation.
Multiple objects can be grouped together by pressing the
“Group/Ungroup” surface menu button when they are
selected. Once a group has been formed, selecting or
deselecting a model selects or deselects its entire group.
Objects can subsequently be ungrouped by pressing the
“Group/Ungroup” button while a group is selected.
Single models or groups of models, once selected, can be
deleted from a scene by pressing the “Delete” button.

Snapping/Collision
To aid in building complex scenes, the system supports
collision detection and snapping between models. By
default this is disabled, but by pressing the “Snap” surface
menu button, collision detection and snapping are enabled.
When translating, objects cannot intersect one another.
Instead, the vertices of the moving object will snap to the
face of any stationary object which it intersects. Purple
marks are displayed to indicate the point at which a vertex
snaps to a face (Figure 12a). If the model is then translated
to any side of the face, it will snap to the edge. Objects can
also snap while rotating. The object will snap such that the
normal of any of its faces matches the normal of any
nearby face. A small tick mark is displayed through parallel
snapped faces to indicate that snapping has occurred.
(Figure 12b).
DISCUSSION
In our research, we uncovered several interesting principles
and issues unique to volumetric displays:
• True 3D displays remove a layer of abstraction between

input and display space, and thus tend to better afford
gestural interactions.

• Because the display space is limited by the physical
enclosure, all objects are within arm’s reach. As a result,
traditional 3D interaction techniques don’t necessarily
apply, necessitating the development of new techniques.

• Given that the display area is within an enclosure,
gestures on and above its surface can be quite directly
mapped to actions within.

• Multiple users can view the scene simultaneously while
maintaining context of their shared physical
surroundings, allowing for richer multi-user experiences.

• With current display technology, head-tracking would be
required for hidden surface removal with one user, and
impossible with multiple users.

The interaction techniques we developed make maximal
use of the three dimensional nature of the display and input
system. While the direct finger tracking allows users to
perform high degree of freedom operations with multiple
fingers, the display technology allows users to accurately
visualize the virtual 3D manipulations with excellent depth
perception. Taken together, this allows for interesting
interactions not possible in traditional input and display
combinations. For example, free-form transformations
allow for simultaneous three degree of freedom translation
and rotation, allowing quick and accurate object placement
in a 3D environment without the need for constant
viewpoint rotations. Combining this with snapping and
collision detection, users can quickly build-up 3D scenes
from a set of primary models (e.g., Figure 13). To improve
precision, users can quickly define arbitrary constraint
axes. Not only can the constraint axis be defined from any
viewpoint, but it can also be adequately visualized, without
the need for adjusting a camera position as would be
required in traditional 3D virtual environments.

Figure 13. A “table setting” scene built using our system.

(top) The scene rendered in high quality to show the precise
composition of its parts. (bottom) Photograph of the scene

as it is displayed in the volumetric display.

While some of the interaction techniques which we
implemented have been adapted from research on virtual
reality systems, others have been designed specifically for
volumetric displays. For example, the use of a ray cursor
has been demonstrated previously, but we extended the
technique to using the index finger to directly control the
ray’s orientation and position as well as using the thumb to
perform a trigger gesture to confirm selections. Similarly,
we extended previous work on virtual rotations to a new
technique that enables precise rotations about all three axes
simultaneously by moving the fingers directly on the
surface of the display.
While the model manipulation techniques make use of up
to three degrees of freedom of input, our mechanism for
selecting between models and scenes, the SurfaceBrowser,
is constrained to the inner surface of the volumetric display.
This, in effect, creates a two dimensional viewing plane,
wrapped around the inside surface. We deliberately
designed the SurfaceBrowser in this manner, rather than
making use of the full 3D display volume, because it frees
up the internal display area for simultaneously viewing
models selected from the SurfaceBrowser. Thus, a user is
able to view their current work area and make selections
from a menu that affects that area, preserving context.
Because our volumetric display has a non-uniform gap
between the surface and the rendered 3D volumetric image,
we felt it was necessary to add a cursor icon to give the

user feedback as to where their finger position was being
mapped into the surface browser. As volumetric display
technology improves, this gap will quite likely be reduced,
and the cursor could be removed from the SurfaceBrowser,
resulting in a sense of even more direct interaction.
It is important to note that although the techniques we
developed were presented in the context of a 3D model
builder, they are equally applicable to any interactive 3D
application which uses a volumetric display. In a sense, our
techniques are 3D analogues of the standard WIMP
techniques used on 2D desktops that work reasonably well
for a broad range of 2D applications. For example, the
SurfaceBrowser can be thought of as a standard file
browser for managing any kind of 3D, or even 2D, data on
a volumetric display.
CONCLUSIONS and FUTURE DIRECTIONS
We have presented a suite of gestural interaction techniques
for use with a 3D volumetric display. To allow for high
fidelity direct user input, we demonstrated the use of a
real-time motion capture system to simulate a
touch-sensitive display surface, detect hover just over the
surface of the display, and track user hand positions when
away from the display. We believe that this is an interesting
use of motion tracking systems, departing from its
traditional use in offline motion capture to provide
movement data for animation, games, and human
movement analysis. While the techniques presented here
can form the basis for highly interactive use of such
displays, there are clearly many more interesting research
challenges that remain to be explored.
With improvements to the display technology, it would
likely be possible to display surfaced and textured models.
When such rendering is available it would be of interest to
explore more advanced object manipulations. For example,
our existing techniques for directly interacting with the
display surface could be built upon to perform various
sculpting operations. Manipulations used when working
with physical clay such as pulling, pushing, squeezing, and
stretching could be adapted to gestural interaction on the
display surface to perform various surface deformations on
virtual models.
To allow for such advanced gestures, it may be useful to
move from tracking the thumb and two index fingers which
we implemented in our system, to full tracking of all
fingers and the palm of both hands. This would clearly
increase the possible set of postures and gestures.
However there would be an obvious trade off. The small
and simple gesture set which we developed allowed for a
simple fluid interface requiring relatively little prior
training of the few users who have tried the system.
Increasing the complexity of the gesture set would require
explicit mechanisms to reveal and teach novice users about
the various possible interface actions. We plan to conduct
more formal usability testing of our gesture set and
interaction techniques in the near future.

Lastly, the display’s 360° field of view makes it an obvious
platform for exploring collaborative multi-user interaction
in 3D environments. Given that users would not need to
wear head mounted displays or special glasses, they would
be able to view the three dimensional data while
maintaining the context of their surrounding environment
and other users, facilitating human-human communication
in conjunction with human-computer interaction. However,
because the work area is a shared three-dimensional
display, unique issues arise when multiple users attempt to
share the space. For example, at what orientation should
text be displayed? What kinds of strategies can be applied
to allow two or more people to work together using gestural
interaction techniques on such a display? The rich
literature on collaborative computing will provide
guidance, but these prior ideas will have to be adapted and
refined for appropriate use with this new display
technology, a challenge we believe is worthy of further
exploration in the future.
ACKNOWLEDGEMENTS
We thank John Hancock for technical support, Daniel
Vogel and Maya Przybylski for help with images and video
production, members of the Dynamic Graphics Project lab
(www.dgp.toronto.edu) at the University of Toronto for
valuable discussions, and Actuality Systems for technical
maintenance of the display.
REFERENCES
1. Balakrishnan, R., Fitzmaurice, G., & Kurtenbach, G.

(2001). User interfaces for volumetric displays. IEEE
Computer. March 2001. p. 37-45.

2. Baudel, T., & Beaudoin-Lafon, M. (1993). Charade:
remote control of objects using free-hand gestures.
Communications of the ACM. 36(7). p. 28-35.

3. Bowman, D., & Hodges, L. (1997). An evaluation of
techniques for grabbing and manipulating remote
objects in immersive virtual environments. ACM
Symposium on Interactive 3D Graphics.

4. Bowman, D.A., Johnson, D.B., & Hodges, L.F.
(1999). Testbed environment of virtual environment
interaction. ACM VRST'99 Symposium on Virtual
Reality Software and Technologies. p. 26-33.

5. Buxton, W., & Fitzmaurice, G.W. (1998). HMD's,
Caves, & Chameleon: A human-centric analysis of
interaction in virtual space. . p. 64-68.

6. Conner, B., Snibbe, S.S., Herndon, K.P., Robbins, D.,
Zeleznik, R., & Dam, A.v. (1992). Three dimensional
widgets. Computer Graphics. 22(4). p. 121-129.

7. Ebert, D., Bedwell, E., Maher, S., Smoliar, L., &
Downing, E. (1999). Realizing 3D visualization using
crossed-beam volumetric displays. Communications
of the ACM. 42(8). p. 101-107.

8. Grossman, T., & Balakrishnan, R. (2004 - in press).
Pointing at trivariate targets in 3D environments.
ACM CHI Conference on Human Factors in
Computing Systems.

9. Hinckley, K., Pausch, R., Goble, J.C., & Kassell, N.
(1994). A survey of design issues in spatial input.
ACM UIST 1994 Symposium on User Interface
Software and Technology. p. 213-222.

10. Kurtenbach, G., Fitzmaurice, G., Baudel, T., &
Buxton, W. (1997). The design of a GUI paradigm
based on tablets, two-hands, and transparency. ACM
CHI 1997 Conference on Human Factors in
Computing Systems. p. 35-42.

11. Liang, J., & Green, M. (1994). JDCAD: A highly
interactive 3D modelingsystem. Computers and
Graphics. 18(4). p. 499-506.

12. Lucente, M. (1997). Interactive three-dimensional
holographic displays: seeing the future in depth.
Computer Graphics issue on Current, New, and
Emerging Display Systems. May 1997.

13. McCauley, M.E., & Sharkey, T.J. (1992).
Cybersickness: Perception of self-motion in virtual
environments. Presence. 1(3). p. 311-318.

14. Mine, M. (1995). ISAAC: A virtual environment tool
for the interactive construction of virtual worlds.
UNC Chapel Hill Computer Science Technical Report
TR95-020.

15. Mine, M. (1995). Virtual environment interaction
techniques. UNC Chapel Hill Computer Science
Technical Report TR95-018.

16. Patterson, R., & Martin, W. Human Stereopsis.
Human Factors. 34(6). p. 669-692.

17. Poupyrev, I., Billinghurst, M., Weghorst, S., &
Ichikawa, T. (1996). The go-go interaction technique:
non-linear mapping for direct manipulation in VR.
ACM UIST Symposium on User Interface Software
and Technology.

18. Ware, C., & Balakrishnan, R. (1994). Reaching for
objects in VR displays: Lag and frame rate. ACM
Transactions on Computer-Human Interaction. 1(4).
p. 331-356.

19. Ware, C., & Lowther, K. (1997). Selection using a
one-eyed cursor in a fish-tank VR environment. ACM
Transactions on Computer Human Interaction. 4(4).
p. 309-322.

20. Zhai, S. (1995). Human performance in six
degree-of-freedom input control. Ph.D. thesis.
University of Toronto.

