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Problem & General Idea

D problem: user input can lead to failure

D idea: computer intervenes when necessary
D [movie of desired result (4-obstacle example)]
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Näıve Implementation

D if user’s input leads to failure within some given

time horizon, override it with a failure-free input
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Näıve Implementation: Problem

D problem: one can get trapped in a “dead-end”

D dead-end > time horizon always possible

failure

failure

Approximate Safety Enforcement Using Computed Viability Envelopes slide: 3/19 JJ J I II



Viability Envelope

D strategy: mark all such “unavoidable failure” states as

“out of bounds”, then stay within bounds

D viability envelope = this bound

= set of all “points of no return”

a slice of viability envelope for orientation =
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Viability Envelope (ctd.)

D the envelope is a manifold in the system’s state-space

D for the simple car, state-space is 3D: (x, y, orientation)

D [movie: 3D tumble of 4-obstacle envelope]
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Applicability

D applicable to any dynamical system with known dynamics

UFO 3000 ???
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– Framework Details –
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Single-step Containment

D correct the control input when about to cause a breach

D disadvantage: harsh and abrupt corrections
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Multi-step Containment

D use predictive look-ahead, act on breaches earlier

D result: milder corrections
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Time to Envelope Breach

D Teb(x, u): “time to envelope breach”

D how long until control input u causes breach from state x

D assumption: u is held constant
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Time to Envelope Breach

D Teb(x, u): “time to envelope breach”

D how long until control input u causes breach from state x

D assumption: u is held constant

D very distant breaches irrelevant

D clamp Teb at Th, the “time horizon”

(i.e., Teb ≤ Th or Teb = ∞)
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Time to Envelope Breach

D Teb(x, u): “time to envelope breach”

D how long until control input u causes breach from state x

D assumption: u is held constant

D very distant breaches irrelevant

D clamp Teb at Th, the “time horizon”

(i.e., Teb ≤ Th or Teb = ∞)

D “breach-free” implies “... within Th”
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System Meta-states and Control Policy

D four meta-states (think: “severity”, “DEFCON”):

D L1: user’s control input is breach-free

D L2: L1 false, but a different input is breach-free

D L3: L2 false, but system still within envelope

D L4: L3 false (i.e., containment failed)

D control input actually applied:

D L1 → user’s control input

D L2 → the breach-free control “closest” to user’s

D L3 → the control input with largest Teb
†

D L4 → N/A†
( †: see “least detrimental” control)
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– Practical Approximations –
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Envelope Approximation

D unlikely to have analytic representation

D must approximate (from samples, other data)

D used: Nearest Neighbor machine learning method
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Discretization of Control Input

D often need to search or map over the input space, U
(e.g., finding maximal Teb(x, u))

D intractable if U is large or continuous

D instead, work with a discretized subset, Û
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– Some Results –
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Rocket

D [movies: world-space, state-space]
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Bike

D [movie]
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Future Work

D evaluate with more complex systems (higher D)

D multi-dimensional inputs: how to spread corrections

across the dimensions?

D incorporate haptics, literally do “pushing the envelope”

D what if only local environment known?
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Summary & Take-away

D real-time constraint of dynamical system to viable region

D predictive look-ahead using constant inputs

D Teb, the “time to envelope breach” (clamped to Th, the

“time horizon”)

D used to choose among four control policies

D http://www.dgp.toronto.edu/~mac/viab_env
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— ¦ End ¦ —
(supplementary material follows)
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Grace Period

D a method to combat NN surface “noise”

D Tgr: max time system is allowed to cross NN envelope

before being identified as a “true transition”
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Why multi-step leads to milder corrections

D more time and space to maneuver

D can do no worse: at worst apply the same control signal

as with a shorter time horizon
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Why the “constant-input” assumption

D in calculating Teb(x, u), need to make assumption about

future values of u

D for non-constant input signals, no guiding principle to

select the “optimal” one

D viability theory: generalized inertia principle

D also, user input tends to change slowly, relative to the

time scale in question (Th)

D hence assume constant-input
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“Least detrimental” emergency control

D problem: meta-state L4 can be reached

D due to envelope approximation error

D when all “recovery” trajectories out of an L3 state

require non-constant input

D “solution”: apply the control which spends least time

outside envelope
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Constructing Envelopes

D Nearest Neighbor used to approximate envelope

D possible NN sample sources: heuristic, empirical, analytic

D other forms can converted to NN samples through queries

D also can compute directly from dynamics (slow)
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Scalability

D online algorithm: O(| Û | · Th)

D offline algorithm (envelope construction):

D # of NN samples for equivalent-quality envelope tends

to grow exponentially with state-space dimensionality

D envelope geometry tends to be simple, relative to # of

dimensions

D perhaps other learning methods can give better

scalability (SVM?)
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Car – track

D [movie]
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Leftovers
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Motivation (short)

D problem: direct human control of dynamical systems is

often difficult, prone to error and failure
(e.g., control-by-wire of a bike)

D particularly difficult for users unfamiliar with system

D idea: computer aids the user by keeping system

controllable

D motivation: “pushing the envelope” metaphor
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Overview

D Framework

D taxonomy of state-space

D containment strategy

D Teb, system meta-states, and control policy
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Overview

D Framework

D taxonomy of state-space

D containment strategy

D Teb, system meta-states, and control policy

D Practical approximations

D approximating envelopes with Nearest Neighbor

D discretization of control input

D Some results
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Taxonomy of State-space

D a landing rocket with bounded thrust (z = altitude)

‘‘viability envelope’’

dz
dt

z

nominal
operation

failure
inevitable

failed (crashed)

unreachable
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Car

D [movie]
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