Toward More Efficient Motion Planning with Differential Constraints

Maciej Kalisiak

Final Oral Exam December 14th, 2007

Outline

1 Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

2 Viability

3 Contributions

- MP in highly constrained problems
- MP w/viability filtering
- Viability-based safety enforcement

Conclusion

What is MP? Types of MP problems MP is hard

Outline

1 Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

2 Viability

3 Contributions

- MP in highly constrained problems
- MP w/viability filtering
- Viability-based safety enforcement

Conclusion

What is MP? Types of MP problems MP is hard

What is Motion Planning (MP)?

in a nutshell: "how to get from A to B?"
sometimes also:

... optimally?

• example problems

4/29

What is MP? Types of MP problems MP is hard

What is Motion Planning (MP)?

in a nutshell: "how to get from A to B?"
sometimes also: "... optimally?"
example problems

What is MP? Types of MP problems MP is hard

What is Motion Planning (MP)?

- in a nutshell: "how to get from A to B?"
 sometimes also:
 - "... optimally?"
- example problems

What is MP? Types of MP problems MP is hard

What is Motion Planning (MP)?

- in a nutshell: "how to get from A to B?"
 sometimes also:
 - "... optimally?"
- example problems

What is MP? Types of MP problems MP is hard

What is Motion Planning (MP)?

- in a nutshell: "how to get from A to B?"
 sometimes also:
 - "... optimally?"
- example problems

What is MP? Types of MP problems MP is hard

Approach

- \bullet solved by converting to dual problem (agent \rightarrow point)
- complication: often cannot manipulate agent directly

What is MP? Types of MP problems MP is hard

Approach

- \bullet solved by converting to dual problem (agent \rightarrow point)
- complication: often cannot manipulate agent directly

What is MP? Types of MP problems MP is hard

Approach

- \bullet solved by converting to dual problem (agent \rightarrow point)
- complication: often cannot manipulate agent directly

5/29

What is MP? Types of MP problems MP is hard

Types of MP problems

common types:

- kinematic
- nonholonomic
- kinodynamic

e.g., "Piano Mover's Problem"

What is MP? Types of MP problems MP is hard

Types of MP problems

common types:

- kinematic
- onnholonomic
- kinodynamic

e.g., agents w/rolling contacts

What is MP? Types of MP problems MP is hard

Types of MP problems

common types:

- kinematic
- nonholonomic
- kinodynamic

e.g., inertia & balance play big role

What is MP? Types of MP problems MP is hard

Types of MP problems

common types:

- kinematic
- nonholonomic
- kinodynamic

Differential Constraints (DC)

 DC: constraints on q' (^d/_{dt} of agent configuration)

but make MP more difficult

What is MP? Types of MP problems MP is hard

MP is hard

hardness

- Piano Mover's Problem:
 - \rightarrow PSPACE-complete
- $\bullet~\mbox{MP}$ problems w/DC: at least as hard

why?

- "curse of dimensionality"
- real world problems often high-D
- DCs complicate search space further

What is MP? Types of MP problems MP is hard

MP is hard

hardness

- Piano Mover's Problem:
 - \rightarrow PSPACE-complete
- $\bullet~\mbox{MP}$ problems w/DC: at least as hard

why?

- "curse of dimensionality"
- real world problems often high-D
- DCs complicate search space further

Outline

Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

2 Viability

3 Contributions

- MP in highly constrained problems
- MP w/viability filtering
- Viability-based safety enforcement

Conclusion

What is Viability?

"definition"

- viable state: \exists an evasive action
- nonviable state: constraint violation unavoidable

What is Viability?

"definition"

- viable state: \exists an evasive action
- nonviable state: constraint violation unavoidable

What is Viability?

"definition"

- viable state: \exists an evasive action
- nonviable state: constraint violation unavoidable

why of interest?

- crops up in many contexts, useful
- exploited throughout thesis:
 - to expedite MP
 - to aid in user-control

Outline

Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

Viability

3 Contributions

- MP in highly constrained problems
- MP w/viability filtering
- Viability-based safety enforcement

Conclusion

 Motion Planning Viability
 MP in highly constrained proble MP w/viability filtering

 Contributions
 Viability-based safety enforcement

Overall goal of thesis

- aim: explore some novel ideas in MP
- focus: improving MP speed
- grand vision: MP with motion "macro-primitives"

Outline

Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

Viability

3 Contributions

• MP in highly constrained problems

- MP w/viability filtering
- Viability-based safety enforcement

4 Conclusion

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

MP in highly constrained problems

MP in highly constrained problems

- improvement to RRT algorithm
- highly-constrained problems: poor performance
- proposed: RRT-Blossom
- result: big speed ups (>10x)

MP in highly constrained problems

- improvement to RRT algorithm
- highly-constrained problems: poor performance
- proposed: RRT-Blossom

• result: big speed ups (>10x)

Motion Planning Viability Contributions MP w/viability filtering Viability-based safety enforcement

MP in highly constrained problems

- improvement to RRT algorithm
- highly-constrained problems: poor performance
- proposed: RRT-Blossom
- result: big speed ups (>10x)

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

- grows two trees (from q_{init} and q_{goal})
- each tree grows toward q_{tqt}

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

- grows two trees (from q_{init} and q_{goal})
- each tree grows toward q_{tqt}

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

- grows two trees (from q_{init} and q_{goal})
- each tree grows toward q_{tqt}

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

- grows two trees (from q_{init} and q_{goal})
- each tree grows toward q_{tqt}

RRT-Blossom

- allow receding edges...
- but not if regressing
- filter with regression test
- bottlenecks

RRT-Blossom

- allow receding edges...
- but not if regressing
- filter with regression test
- bottlenecks

regression if: $\exists other \mid \rho(parent, leaf) > \rho(other, leaf)$

RRT-Blossom

- allow receding edges...
- but not if regressing
- filter with regression test
- bottlenecks

Outline

Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

Viability

3 Contributions

- MP in highly constrained problems
- MP w/viability filtering
- Viability-based safety enforcement

4 Conclusion

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

MP w/viability filtering

drawbacks of tree-based MP:

- tactile-only sensing
- search ignores prior attempts

general idea:

- "work smarter, not harder"
- add "sight" + "learning" \rightarrow faster MP

MP in highly constrained problems MP w/viability filtering Viability-based safety enforcement

MP w/viability filtering

drawbacks of tree-based MP:

- tactile-only sensing
- search ignores prior attempts

general idea:

- "work smarter, not harder"
- add "sight" + "learning" \rightarrow faster MP

Key extensions

"sight"

- virtual sensors: distance along path
- yield "locally situated" state

"learning'

- \bullet prior trajectories \rightarrow viability models
- models parametrized using sensors
 - \rightarrow local models
 - \rightarrow transferrable
- ideally: bootstrapping

Key extensions

"sight"

- virtual sensors: distance along path
- yield "locally situated" state

"learning"

- \bullet prior trajectories \rightarrow viability models
- models parametrized using sensors
 - \rightarrow local models
 - $\rightarrow \text{transferrable}$
- ideally: bootstrapping

Exploiting viability

observations

- \bullet currently: search in all of $\mathcal{X}_{\mathit{free}}$
- but \mathcal{X}_{free} includes \mathcal{X}_{ric}
- x_{qoal} usually unreachable from $x \in \mathcal{X}_{ric}$

Exploiting viability

observations

- \bullet currently: search in all of $\mathcal{X}_{\mathit{free}}$
- but \mathcal{X}_{free} includes \mathcal{X}_{ric}
- x_{qoal} usually unreachable from $x \in \mathcal{X}_{ric}$

Exploiting viability

observations

- currently: search in all of \mathcal{X}_{free}
- but \mathcal{X}_{free} includes \mathcal{X}_{ric}
- x_{goal} usually unreachable from $x \in \mathcal{X}_{ric}$

Exploiting viability

observations

- currently: search in all of \mathcal{X}_{free}
- but \mathcal{X}_{free} includes \mathcal{X}_{ric}
- x_{goal} usually unreachable from $x \in \mathcal{X}_{ric}$

\Rightarrow avoid futile searching!

- model agent viability
- keep MP search within Viab(X_{free})
- observed: speed-up of up to 10x

Results: model transfer

agent

problem posed

model trained on

Results: model transfer

Results: tree structure

RRT-CT

Outline

Motion Planning (MP)

- What is MP?
- Types of MP problems
- MP is hard

Viability

3 Contributions

- MP in highly constrained problemsMP w/viability filtering
- Viability-based safety enforcement

Conclusion

Viability-based safety enforcement

- \Rightarrow assisted control:
 - inherently useful
 - facilitates obtaining user-demonstrated training data
 - helpful in user-assisted MP (future work)

• key idea: viability more reliable for detecting imminent danger

Viability-based safety enforcement

- \Rightarrow assisted control:
 - inherently useful
 - facilitates obtaining user-demonstrated training data
 - helpful in user-assisted MP (future work)

• key idea: viability more reliable for detecting imminent danger

Collision avoidance

typical (collision-based)

- based on predictive lookahead (T_h seconds)
- weakness: T_h is finite
 - T_h may be too small
 - safety \uparrow as $T_h \to \infty$

- only a minimal lookahead needed
- Ionger lookaheads: milder corrections

Collision avoidance

typical (collision-based)

- based on predictive lookahead (T_h seconds)
- weakness: T_h is finite
 - T_h may be too small
 - safety \uparrow as $T_h \to \infty$

- only a minimal lookahead needed
- Ionger lookaheads: milder corrections

Collision avoidance

typical (collision-based)

- based on predictive lookahead (T_h seconds)
- weakness: T_h is finite
 - T_h may be too small
 - safety \uparrow as $T_h \to \infty$

- only a minimal lookahead needed
- Ionger lookaheads: milder corrections

Collision avoidance

typical (collision-based)

- based on predictive lookahead (T_h seconds)
- weakness: T_h is finite
 - T_h may be too small
 - safety \uparrow as $T_h \to \infty$

- only a minimal lookahead needed
- Ionger lookaheads: milder corrections

Collision avoidance

typical (collision-based)

- based on predictive lookahead (T_h seconds)
- weakness: T_h is finite
 - T_h may be too small
 - safety \uparrow as $T_h \to \infty$

- only a minimal lookahead needed
- Ionger lookaheads: milder corrections

Collision avoidance

typical (collision-based)

- based on predictive lookahead (T_h seconds)
- weakness: T_h is finite
 - T_h may be too small
 - safety \uparrow as $T_h \to \infty$

- only a minimal lookahead needed
- longer lookaheads: milder corrections

Operation

25/29

Motion Planning Viability Contributions MP w/viability filtering Viability-based safety enforcement

Viability of control actions

26/29

Experiments

agents

Results

$\mathit{Viab}(\mathcal{X}_{\mathit{free}})$ model

environment

enforcement

Conclusion

contributions

- better handling of constrained environments in RRT
- more efficient MP by narrowing search to $\mathit{Viab}(\mathcal{X}_{\mathit{free}})$
- more robust threat avoidance in computer-assisted control

• future work:

- learning appropriate *actions* from motion data
- MP w/motion "macro primitives"
- evaluate viability filtering with other MPs
- local viability models for safety enforcement
- (near-)optimal solutions for MP w/DC
- human-derived motion data (e.g., style content)
- human-guided MP: selection of style or topology

Conclusion

contributions

- better handling of constrained environments in RRT
- \bullet more efficient MP by narrowing search to $\mathit{Viab}(\mathcal{X}_{\mathit{free}})$
- more robust threat avoidance in computer-assisted control

• future work:

- learning appropriate actions from motion data
- MP w/motion "macro primitives"
- evaluate viability filtering with other MPs
- local viability models for safety enforcement
- (near-)optimal solutions for MP w/DC
- human-derived motion data (e.g., style content)
- human-guided MP: selection of style or topology