Toward Virtual Actors Progress and Prospects

<mac@dgp.toronto.edu>

Department of Computer Science University of Toronto

Motivation

- present day animation
 - method of interaction dictated by tools
 - generally low-level, time-intensive
 - require specialized, *technical* knowledge and skill

Motivation

- present day animation
 - method of interaction dictated by tools
 generally low-level, time-intensive
 require specialized, *technical* knowledge and skill
- animation future?
 - directing a cast of "virtual actors"
 mostly at task-level
 occasionally at an arbitrarily lower level

Overview

- virtual actors
 - what's involved?what's discussed?
- review of animation methods
 - path planning
 character animation methods
 motion graphs
- related open problems

What's involved?

\blacksquare human \rightarrow computer

specification of desired motion action style

What's involved?

- \blacktriangleright human \rightarrow computer
 - specification of desired motion
 action
 style
- \blacktriangleright computer \rightarrow character
 - implementing motions using "animation methods"
 path planning
 character animation
 object manipulation

What's discussed?

- \blacksquare focus on computer \rightarrow character
- focus on actions, rather than style
- object manipulation = path planning in disguise

deals with the "Piano Mover's Problem"

- deals with the "Piano Mover's Problem"
- C, the "configuration space":
 set of all possible character configurations

- deals with the "Piano Mover's Problem"
- C, the "configuration space":
 set of all possible character configurations
- → C_{free} , the "freespace": set of collision-free configurations ($C_{free} \subseteq C$)

- deals with the "Piano Mover's Problem"
- C, the "configuration space":
 set of all possible character configurations
- → C_{free} , the "freespace": set of collision-free configurations ($C_{free} \subseteq C$)
- \blacktriangleright basic idea: find a path through C_{free}

Path Planning: Example

\blacksquare L-shaped robot that rotates and moves only along x

slide: 6/21

Character Animation "Motion Source" Space

slide: 7/21 📢 🖌 🕨

Traditional Taxonomy

keyframing

keyframing

motion capture ('mocap')

- keyframing
- motion capture ('mocap')
 - motion editing: [BW95, WP95, UAT95, Gle97, Gle98, PB02]

- keyframing
- motion capture ('mocap')
 - → motion editing: [BW95, WP95, UAT95, Gle97, Gle98, PB02]
- procedural [Per95]

Trajectory-based Methods

Spacetime Constraints (SCs) [WK88, Coh92, LGC94]

Trajectory-based Methods

motion from footprints [vdP97, TvdP98]

hand-designed controllers [MZ90, HSL92, HWBO95, HP97]

auto-generated controllers [vdPFV90, vdPF93, vdPKF94, NM93, Sim94]

composable controllers [FvdPT01]

"human is the controller" [LvdPF00]

Motion Graphs

augmenting motion data with transitions

solves the "can't get there from here" problem

 \bigcirc

Motion Graphs

recent work: [KGP02, LCR+02, AF02]

related work

- ➡ games: move-trees [MBC01]
- ➡ motion DB [LvdP96]
- statistical modeling of human motion [Bow00, TH00, LWS02]

Open Problems

- virtual actors: motion specification at various levels
- graceful motions; e.g., skating, ballet
- dressing/undressing (astronaut suit vs. a sweater)
- motion recognition: "what is he/she doing?"
- dense motion graphs

"uniform" sampling of state-space in area of interest

- "uniform" sampling of state-space in area of interest
- method: state-space exploration through simulation

- "uniform" sampling of state-space in area of interest
- method: state-space exploration through simulation
- benefits
 - impossible or dangerous motions
 - ► automatic detection of motion space
 - dynamic balance evaluator
 - recovery from statically unstable states
 - simulator replacement

- key problem: curse of dimensionality
 - node density control
 - pruning functions
 - parametrized trajectories

- key problem: curse of dimensionality
 - node density control
 - pruning functions
 - parametrized trajectories

finding hard-to-reach parts of state-space

- key problem: curse of dimensionality
 - node density control
 - pruning functions
 - parametrized trajectories
- finding hard-to-reach parts of state-space
- getting "natural" transitions

- key problem: curse of dimensionality
 - node density control
 - pruning functions
 - parametrized trajectories
- finding hard-to-reach parts of state-space
- getting "natural" transitions
- "natural" state similarity metric

References

- [AF02] Okan Arikan and D. A. Forsyth. Interactive motion generation from examples. *Proceedings of SIGGRAPH*, 2002.
- [Bow00] Richard Bowden. Learning statistical models of human motion. *IEEE Workshop on Human Modeling, Analysis & Synthesis*, July 2000.
- [BW95] Armin Bruderlin and Lance Williams. Motion signal processing. *Computer Graphics Proceedings*, 1995.
- [Coh92] Michael F. Cohen. Interactive spacetime control for animation. *Computer Graphics*, pages 293–302, 1992.
- [FvdPT01] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Composable controllers for physics-based character animation. In Eugene Fiume, editor, *SIGGRAPH 2001, Computer Graphics Proceedings*, pages 251–260. ACM Press / ACM SIGGRAPH, 2001.
- [Gle97] Michael Gleicher. Motion editing with spacetime constraints. *Proceedings of the 1997* Symposium on Interactive 3D Graphics, 1997.
- [Gle98] Michael Gleicher. Retartgetting motion to new characters. *Computer Graphics Proceedings*, 1998.
- [HP97] Jessica K. Hodgins and Nancy S. Pollard. Adapting simulated behaviors for new characters. *Computer Graphics Proceedings*, pages 153–162, 1997.

- [HSL92] Jessica K. Hodgins, Paula K. Sweeney, and David G. Lawrence. Generating natural-looking motion for computer animation. *Proceedings of Graphics Interface*, 1992.
- [HWBO95] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O'Brien. Animating human athletics. *Computer Graphics Proceedings*, pages 71–78, 1995.
- [KGP02] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. *Proceedings of SIGGRAPH*, 2002.
- [LCR⁺02] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard. Interactive control of avatars animated with human motion data. *Proceedings* of SIGGRAPH, 2002.
- [LGC94] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hierarchical spacetime control. *Computer Graphics Proceedings*, pages 35–42, 1994.
- [LvdP96] Alexis Lamouret and Michiel van de Panne. Motion synthesis by example. In *Computer Animation and Simulation '96*, pages 199–212, 1996.
- [LvdPF00] Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Interactive control for physically-based animation. In Kurt Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, pages 201–208. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.
- [LWS02] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion texture: A two-level statistical model for character motion synthesis. *Proceedings of SIGGRAPH*, 2002.

- [MBC01] Mark Mizuguchi, John Buchanan, and Tom Calvert. Data driven motion transitions for interactive games. *Eurographics 2001 Short Presentations*, 2001.
- [MZ90] Michael McKenna and David Zeltzer. Dynamic simulation of autonomous legged locomotion. *Computer Graphics*, 24(4):29–38, 1990.
- [NM93] J. Thomas Ngo and Joe Marks. Spacetime constraints revisited. *Computer Graphics Proceedings*, pages 343–350, 1993.
- [PB02] Katherine Pullen and Christoph Bregler. Motion capture assisted animation: Texturing and synthesis. *Proceedings of SIGGRAPH*, 2002.
- [Per95] Ken Perlin. Real time responsive animation with personality. *IEEE Transactions on Visualization and Computer Graphics*, 1995.
- [Sim94] Karl Sims. Evolving virtual creatures. *Computer Graphics Proceedings*, 1994.
- [TH00] Luis Molina Tanco and Adrian Hilton. Realistic synthesis of novel human movements from a database of motion capture examples. *Proceedings of the IEEE Workshop on Human Motion*, 2000.
- [TvdP98] Nick Torkos and Michiel van de Panne. Footprint-based quadruped motion synthesis. *Proceedings of Graphics Interface*, pages 151–160, June 1998.
- [UAT95] Munetoshi Unuma, Ken Anjyo, and Ryozo Takeuchi. Fourier principles for emotion-based human figure animation. *Computer Graphics Proceedings*, 1995.
- [vdP97] Michiel van de Panne. From footprints to animation. *Computer Graphics Forum*, 16(4):211–224, 1997.

slide: 24/21

- [vdPF93] Michiel van de Panne and Eugene Fiume. Sensor-actuator networks. *Computer Graphics Proceedings*, 1993.
- [vdPFV90] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion synthesis using state-space controllers. *Computer Graphics*, 1990.
- [vdPKF94] Michiel van de Panne, Ryan Kim, and Eugene Fiume. Virtual wind-up toys for animation. *Proceedings of Graphics Interface*, pages 208–215, 1994.
- [WK88] Andrew Witkin and Michael Kass. Spacetime constraints. *Computer Graphics*, 22(4):159–168, 1988.
- [WP95] Andrew Witkin and Zoran Popović. Motion warping. *Computer Graphics Proceedings*, 1995.