
Space Deformations
and their Application To Shape Modeling

Alexis Angelidis Karan Singh

Dynamic Graphics Project, University of Toronto∗ Dynamic Graphics Project, University of Toronto

Abstract

We present an overview of a set of techniques called space
deformations, also known as free-form deformations, warps,
skinning or deformers. This family of techniques has various
applications in modeling, animation, rendering or simula-
tion, and we focus especially on their application to model-
ing. Space deformation techniques are mappings of space
onto another space, and can therefore be applied conve-
niently to any embedded geometry. This independence from
the underlying geometric representation of deformed shape
makes even the simplest and earliest deformation techniques
still applicable and popular in current industrial practice.

1 Introduction

Computer Graphics representations of shape are typically
defined using a discrete set of parameters that have a vi-
sual manifestation, such as the vertices of a mesh, control
points of parameteric curves and surfaces or skeletal shapes
of implicit surfaces. These visual parameters, traditionally,
also serve as handles for the interactive manipulation of the
underlying shape. Unfortunately, simply using underlying
mathematical handles as a manipulation interface has two
major disadvantages. First, there is no connection between
the resolution and visual layout of the shape handles and
the user desired manipulation. Creating a diagonal surface
ridge, for example, by moving control vertices of a rectan-
gular patch is a extremely difficult. Second,deformations
defined using the handles of a specific representation cannot
be trivially be applied to other shape representations or even
different instances of the same shape representation. Space
deformations are a family of techniques that address these
defficiencies by defining manipulations of space that are di-
rectly applicable to any embedded shape representation. We
present an overwiew of space deformation in Section 2, fol-
lowed by a more detailed presentation of various space defor-
mation techniques that are particularly applicable to shape
modeling in Section 3. In Section 4, we summarize the tech-
niques presented with a taxonomy of space deformation.

1.1 Principle of Modeling by Space Deformation

With space deformations, a deformed shape is obtained by
repeated deformation of the space in which the initial shape
is embedded. A convenient formalism can be used for spec-
ifying any modeling operation by deformation: the final
shape S(tn) is defined by composition of functions applied

∗On leave from the Graphics & Vision Research Lab., U. of

Otago, New Zealand.

to the initial shape S(t0):

S(tn) =

n−1

Ω
i=0

fti 7→ti+1(p) | p ∈ S(t0)

ff

(1)

where
n−1

Ω
i=0

fti 7→ti+1(p) = ftn−1 7→tn ◦ · · · ◦ f07→1(p)

The operator Ω expresses the finite repeated composition of
functions. Each function fti 7→ti+1R

3 7→ R
3 is a deformation

that transforms every point p of space at time ti into a
point of space at time ti+1. Sections 2 will focus on defining
functions fti 7→ti+1 . Section 3 will address issues related to
representing S(ti).

Normal Deformation: Computing accurate normals to the
surface is very important, since normals are used for shading
and their level of quality will dramatically affect the visual
quality of the shape. Let us recall that in order to compute
the new normal after deformation, the previous normal needs
to be multiplied by the co-matrix1 of the Jacobian of the
deformation [Barr 1984]. The Jacobian of f at p is the

matrix J(f,p) = (∂f
∂x

(p), ∂f
∂y

(p), ∂f
∂z

(p)), and the following

expression is a convenient way to compute the co-matrix of
J = (jx, jy, jz), where the vectors jx, jy and jz are column
vectors and × denotes the cross product:

JC = (jy × jz, jz × jx, jx × jy) (2)

Note that the multiplication of a vector by JC does not
preserve its length. It is therefore necessary to divide a de-
formed normal by its magnitude.

Generic blending: An practical advantage of space defor-
mation techniques is that they may be treated as black-
boxes and blended in a generic manner. Let us consider n
deformations fi and define a partition of unity wi, possibly
scalar fields. The deformations can be applied simultane-
ously to a point:

p +

n
X

i=1

wi(fi(p)− p) (3)

The space deformation family of techniques can therefore
be seen as a toolbox in which the tools can be combined
by handcrafting the weights wi. In the following, we will
however present them independently from each other to un-
derline their strength and weaknesses.

2 Space Deformations Techniques

This section reviews several space deformation techniques,
organized in four groups based on the geometric connectiv-
ity between the control handles: point/parameter controls,

1Matrix of the co-factors.

10

curve controls, surface controls, lattice-based controls and
blendable controls. Although all space deformation may be
blended using the above generic method, some of the tech-
niques include convenient blending techniques in their for-
malism, and the interacting handles are not restricted by
any connectivity.

For the sake of clarity, we present existing space defor-
mations aligned with the orthonormal axes ex, ey and ez

and within the unit cube [0, 1]3 whenever possible, because
a mere change of coordinates allows the artist to place the
deformation anywhere in space. To compare existing defor-
mation techniques from the same point of view, we also use
ez as the common axis of deformation when applicable, thus
we reformulate some of the original formulas. To begin with,
note that affine transformations (translation, rotations, and
scale) are the simplest examples of space deformations.

2.1 Point/parameters Control

This section contains the subset of space deformations whose
control parameters are disconnected elements often without
any explicit visual handle.

2.1.1 Global and Local Deformations of Solid Primitives

A. Barr defines space tapering, twisting and bending via
matrices whose components are functions of one space coor-
dinate [Barr 1984]. We denote (x, y, z)T the coordinates of
a point. We show in Figures 1, 2, and 3 the effects of these
operations, and we give their formula in the form of 4 × 4
homogeneous matrices to be applied to the coordinates of
every point to be deformed.

Tapering operation: The function r is monotonic in an in-
terval, and is constant outside that interval.

0

B

@

r(z) 0 0 0
0 r(z) 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 1: Taper deformation of a super-ellipsoid shape.

Twisting operation: The function θ is monotonic in an in-
terval, and is constant outside that interval.

0

B

@

cos(θ(z)) − sin(θ(z)) 0 0
sin(θ(z)) cos(θ(z)) 0 0

0 0 1 0
0 0 0 1

1

C

A

Figure 2: Twist deformation of a super-ellipsoid.

Bending operation: This operation bends space along the
axis y, in the 0 < z half-space. The desired radius of cur-
vature is specified with ρ. The angle corresponding to ρ is
θ = ẑ/ρ. The value of ẑ is the value of z, clamped in the
interval [0, zmax].
A. Barr observes that rendering the deformed shape with
rays of light is equivalent to rendering the undeformed shape
with curves of light. The curves of light are obtained by
applying the inverse of the deformation to the rays, assuming
the deformation is reversible.

0

B

@

cos θ 0 sin θ ρ− ρ cos θ − ẑ sin θ
0 1 0 0

− sin θ 0 cos θ ρ sin θ − ẑ cos θ
0 0 0 1

1

C

A

Figure 3: Bend deformation of a super-ellipsoid.

2.1.2 A Generic Implementation of Axial Procedural De-
formation Techniques,

C. Blanc extends A. Barr’s work to mold, shear and pinch
deformations [Blanc 1994]. Her transformations use a func-
tion of one or two components. She names this function
the shape function. Examples and formulas are shown in
Figures 4, 5, and 6.

0

B

@

r(z) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 4: Pinch deformation of a super-ellipsoid.

0

B

@

r(tan−1(x, y)) 0 0 0
0 r(tan−1(x, y)) 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 5: Mold deformation of a super-ellipsoid.

2.1.3 Geometric Deformation by Merging a 3D Object
with a Simple Shape

P. Decaudin proposes a technique that allows the artist to
model a shape by iteratively adding the volume of simple 3D
shapes [Decaudin 1996]. His method is a metaphor of clay
sculpture by addition of lumps of definite size and shape.
His deformation function is a closed-form, as opposed to a
numerical method that would explicitly control the volume
[Hirota et al. 1999].

Loosely speaking, this technique inflates space by blowing
up a tool in space through a hole. This will compress space
around the point in a way that preserves the outside volume.
Hence if the tool is inserted inside the shape, the tool’s vol-
ume will be added to the shape’s volume. On the other
hand, if the tool is inserted outside the shape, the shape will
be deformed but its volume will remain constant. This is
illustrated for the 2D case in Figure 9. A restriction on the
tool is to be star-convex with respect to its center c . The
deformation function is2 (see Figure 8):

f3D(p) = c + 3
p

ρ(p)3 + r(p)3 n (4)

� ρ(p) is the magnitude of the vector u = p− c.

2The 2D case is obtained by replacing 3 with 2.

11

0

B

@

1 0 0 s(z)
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A

Figure 6: Shear deformation of a super-ellipsoid.

Figure 7: Steps of the modeling of a cat, image by P. De-
caudin.

� r(p) is the distance between c and the intersection of
the tool with the half-line (c,u).

�
n = u/‖u‖ is the unit vector pointing from c to p.

If the tool was not a star-convex in c, then r(p) would
be ambiguous. The deformation is foldover-free. It is con-
tinuous everywhere except at the center c. The effect of
the deformation converges quickly to the identity with the
increasing distance from c. The deformation can be con-
sidered local, and is smooth everywhere except at c. An
example in 3D is shown in Figure 7. A feature of this space
deformation which is rare, is that it has an exact yet simple
inverse in the space outside the tool:

f−1
3D (p) = c + 3

p

ρ(p)3 − r(p)3 n (5)

c
r

ρ
T

p
f(p)

Figure 8: The insertion of a tool at center c affects the
position of point p. See the deformation in Equations (4).

2.1.4 Interactive Space Deformation with Hardware As-
sisted Rendering

Y. Kurzion and R. Yagel present ray deflectors [Kurzion and
Yagel 1997]. The authors are interested in rendering the
shape by deforming the rays, as opposed to directly deform-
ing the shape. To deform the rays, one needs the inverse
of the deformation that the artist intends to apply to the

(a)

(b)

Figure 9: (a) Deformation of a shape (green) by blowing
up a tool (yellow) outside the shape. The shape’s area is
preserved. (b) Deformation of a shape by blowing up a tool
inside the shape. The shape’s area is increased by that of
the tool.

shape. Rather than defining a deformation and then trying
to find its inverse, the authors directly define deformations
by their inverse. Their tool can translate, rotate and scale
space contained in a sphere, locally and smoothly. More-
over they define a discontinuous deformation that allows the
artist to cut space, and change a shape’s topology. A tool is
defined within a ball of radius r around a center c. Let ρ be
the distance from the center of the deflector c and a point
p.

ρ = ‖p− c‖ (6)

Translate deflector: To define a translate deflector, the
artist has to provide a translation vector, t. The effect of
the translate deflector will be to transform the center point,
c, into c + t.

fT(p) =

p− t(1− ρ2

r2)2 if ρ < r
p otherwise

(7)

where θ ∈ R

Rotate deflector: To define a rotate deflector, the artist
has to provide an angle of rotation, θ, and a vector, n, about
which the rotation will be done. The reader can find the
expression of a rotation matrix, Rθ′,n,c, in Appendix ??.
Let us call θ′ an angle of rotation that varies in space:

θ′ = −θ(1− ρ2

r2
)4

fR(p) =

Rθ′,n,c · p if ρ < r
p otherwise

(8)

where ‖t‖ ∈ [0,
3
√

3r

8
]

Scale deflector: To define a scale deflector, the artist has
to provide a scale factor s. The scale deflector acts like a

12

magnifying glass.

fS(p) =

p− (p− c)(1− ρ2

r2)4s if ρ < r
p otherwise

(9)

where s ∈ [−1, 1]

Discontinuous deflector: To define a discontinuous deflec-
tor, the artist has to provide a translation vector, t. The
deflector is split into two halves, on each side of a plane go-
ing through c and perpendicular to t. In the half pointed
at by t, the discontinuous deflector will transform c, into
c+t, while in the other half, the discontinuous deflector will
transform c, into c− t. The effect will be to cut space. The
deformation applied to the rays is:

fD(p) =

8

>

<

>

:

p− t(1− ρ2

r2)2 if ρ<r and 0<(p− c) · t
p + t(1− ρ2

r2)2 if ρ<r and (p− c) · t<0
p otherwise

(10)

where θ ∈ R

Since this deformation is discontinuous on the disk separat-
ing the two halves of the deformation, a ray crossing that
disk will be cut in two, as we show in Figure 10(c). Thus
a shape intersection algorithm will have to march along the
ray from the two sides of the ray, until each curve crosses the
separating disk. This deformation assumes that the shape’s
representation has an inside and outside test. Note that
other authors have extended FFD for dealing with disconti-
nuities [Schein and Elber 2004].

(a) (b) (c)

(d) (e)

Figure 10: (a) Discontinuous deflector as observed by the
artist. Two arbitrary rays are shown. (b) Simple case, where
the ray of light crosses only one hemisphere. (c) When the
ray of light changes hemisphere, the curve of light is subject
to a discontinuity. (d, e) Images by Y. Kurzion and R. Yagel.

2.1.5 Twister

I. Llamas et al propose a method called twister in which
a twist transformation of points is weighted with a scalar
function [Llamas et al. 2003], i.e. in a similar way to IFFD
but with a transformation restrained to a twist. With this
restriction, they propose to weight single twists along the

trajectory of transformation rather than weighting the dis-
placement. They define a twist by transforming an orthonor-
mal coordinate system (o,u,v,w) into (o′,u′,v′,w′). The
axis of the twist is defined by a direction d and point a
on the axis, while the angle of rotation around the axis is α
and the translation factor along the axis is d:

d = g

‖g‖

where g=(u′−u)×(v′−v)+(v′−v)×(w′−w)+(w′−w)×(u′−u)

α = 2 arcsin(‖u′−u‖
2‖d×u‖

)

d = d · (o′ − o)

a = o+o′−dd
2

+ d×(o−o′)
2 tan(α/2)

(11)

Their procedure for deforming a point p with a twist param-
eterized in t is:

1. Bring p into local coordinates: translate by − a and
then rotate by a rotation that maps d onto z.

2. Apply the twist in local coordinates: translate by t d
along z and rotate by t α around z

3. Finally bring p back into world coordinates: rotate by
a rotation that maps z onto d and translate by a

To weight the twist, they propose to use a piecewise scalar
function:

t(p) = cos2(π‖p− o‖/2r) (12)

For operations that require simultaneous twists, they pro-
pose simply to add the displacement of the weighted twist.
Details for defining a two-point constraint can be found in
the paper.

2.2 Curve Control

Curve Control deformations are a subset of space deforma-
tions whose control-points are geometrically connected along
a curve. The curve may be initially straight or bent. To com-
pare existing deformation techniques from the same point of
view, we use ez as the common axis of deformation, thus we
reformulate some of the original formulas.

2.2.1 A Generalized de Casteljau Approach to 3d Free-
Form Deformation

Y.K. Chang and A.P. Rockwood propose a polynomial de-
formation that efficiently achieves “Barr”-like deformations
and more [Chang and Rockwood 1994], using a Bézier curve
with coordinate systems defined along ez at the curve’s con-
trol knots (z0, z1 . . . , zn) ∈ [0, 1]n+1. The initially straight
segment z ∈ [0, 1] is deformed by defining coordinate sys-
tems (ci,ui,vi,wi) along that segment. The shape follows
the deformation of the segment, as shown in Figure 11.
To compute the image q of a point p of the original shape,
the matrix transforming a point to a local coordinate sys-
tems is needed:

Mi =

0

B

@

ui,x vi,x wi,x ci,x

ui,y vi,y wi,y ci,y

ui,z vi,z wi,z ci,z

0 0 0 1

1

C

A
(13)

where wi = ci+1 − ci , and ui, vi are the handles.

Using this matrix, the deformation of a point is obtained
recursively with the de Casteljau algorithm for evaluating a

13

x
y

z

x
y

z

c

c
c

c

0

1

2

3

x
y

z

x
y

z

straight initial control points deformed
axis shape and handles shape

Figure 11: Example of the deformation of Y.K. Chang and
A.P.Rockwood applied to a super-ellipsoid. There is no need
to define a pair of handles for the end control point.

Bézier curve:

f j
i (p) = (1− pz)f

j−1
i (p) + pzf j−1

i+1 (p) (14)

where f0
i (p) = Mi · p

The original generalized de Casteljau algorithm presented
by Y.K. Chang and A.P. Rockwood is a recursion on affine
transformations rather than on points. They remark that
their recursion simplifies to the classic de Casteljau algo-
rithm when the affine transformations are degenerate, and
use the degenerate case in all their examples. As we show in
Figure 12, this method is capable of performing “Barr”-like
deformations and more.

initial stretch taper

swell twist bend

Figure 12: Deformation of a super-ellipsoid.

2.2.2 Axial Deformation

A limitation of the above method is the initial rectilinear
axis. If the shape is initially bent, the manipulation of an
initially straight control axis will not induce a predictable
behavior of the shape. F. Lazarus et al. develop an ex-
tension of axial-based deformations using an initially curved
axis [Lazarus et al. 1994]. Let us define a parametric curve
c(u). A point p in space is attached to local coordinates
along the curve. The origin of this local coordinate system
is c(up), the closest point to p on the curve, and the axes are
those of an extended Frenet frame that discards vanishing
points [Bloomenthal 1990]. To find the closest point to p on
curves, B. Crespin proposes an efficient algorithm based on
subdivision [Crespin 1999]. The axes are computed by prop-
agating along the curve a frame defined at one extremity of
the curve. The axes consist of three vectors: a tangent t(u),
a normal n(u) and a binormal b(u). The propagated frame
is computed as follows:

� the unit tangent at the origin is given by the equation
of the curve:
t(0) = dc(0)

du
/‖ dc(0)

du
‖.

� the normal and binormal are given by the Frenet frame,
or can be any pair of unit vectors such that the initial
frame is orthonormal.

To compute the next frame, a rotation matrix is needed. The
purpose of this matrix is to minimize torsion along the curve.
Numerous constructions of the rotation matrix require a fast
formulation:

R =

0

@

axx+θ axy+bz azx−by

axy−bz ayy+θ ayz+bx

azx+by ayz−bx azz+θ

1

A (15)

where
(ax, ay, az)

> =
t(ui)×t(ui+1)

‖t(ui)×t(ui+1)‖
α = 1− θ

θ = t(ui) · t(ui+1) β =
√

1− θ2
(16)

axx = αa2
x axy = αaxay bx = βax

ayy = αa2
y ayz = αayaz by = βay

azz = αa2
z azx = αazax bz = βaz

(17)

Given a frame at parameter ui, the next axes of a frame at
ui+1 are computed as follows:

� the tangent is defined by the equation of the curve:

t(ui+1) =
dc(ui+1)

du
/‖ dc(ui+1)

du
‖.

� the normal is given by the rotation of the previous nor-
mal: n(ui+1) = R · t(ui).

� the binormal is given by a cross product: b(ui+1) =
t(ui)× n(ui).

The choice of the size of the step, ui+1 − ui, depends on the
trade-off between accuracy and speed. B. Crespin extends
the axial deformation to surface deformation [Crespin 1999].

2.2.3 Blendeforming: Ray Traceable Localized Foldover-
Free Space Deformation

As explained in the introduction, the motivation for which a
space deformation should be foldover-free is its reversibilty,
with applications such as undoing operations or raytracing.
D. Mason and G. Wyvill introduce blendeforming [Mason
and Wyvill 2001]. A deformation is specified by moving a
point or the control points of a curve along a constrained
direction. Space follows the deformation of these control
features in a predictable manner.

They define the blendeforming deformation as a bundle
of non-intersecting streamlines. The streamlines are par-
allel, and described by a pair of functions: bx,y : R

2 7→
[−dmax, dmax] and bz : [0, 1] 7→ [0, 1]. Function bx,y controls
the amount of deformation for each individual z-streamlines,
and the choice of function bz affects the maximum compres-
sion of space along the streamlines. The deformation of point
p = (x, y, z)> is

pdef = (x, y, zdef)> (18)

where zdef = z + bx,y(x, y) bz(z)

It is the definition of bz together with a corresponding
threshold dmax that prevents foldovers, as shown in Fig-
ure 13. The following function is a possible choice for bz(z),
used in the example:

bz(z) =

16z2(1− z)2 if z ∈ [0, 1]
0 otherwise

(19)

with dmax =
3
√

3

16
' 0.324

14

Functions permitting larger values for dmax can be found
in the original paper. Since bx,y is independent of z, any
function with values in [−dmax, dmax] can be used for it, re-
gardless of the slope. Because the amplitude of the effect of
a blendeforming function is bounded by the dmax threshold,
it is obvious that modeling an entire shape uniquely with
blendeforming functions can be rather tedious. In the orig-
inal paper, the authors also propose blendeforming bending
functions defined in cylindrical coordinates, or using control
curves

x

y

z

x

y

z

x

y

z

(a) (b) (c)

Figure 13: (a) Initial scene: two parallel planes. (b) Blende-
forming, with bx,y(x, y) = (x2 − x + y2 − y − 1/2)2. The
value of dmax guarantees that the two planes will never in-
tersect. (c) With dmax < d, foldover occurs: the lower plane
intersects the higher plane.

Figure 14: Top: a control curve with height control points.
Bottom: a control curve with radial control points. Image
by D. Mason and G. Wyvill.

2.2.4 Interactive Skeleton-Driven Dynamic Deformations

S. Capell et al. propose a framework for skeleton-driven an-
imation of elastically deformable characters [Capell et al.
2002]. This techique defines over a character’s skeleton-
structure a layer of FFD lattice [Sederberg and Parry 1986]
with the control points driven by the dynamic equation of
elasticity. Simulation is beyond the scope of this overview,
thus we refer to the original paper for detail.

2.3 Surface Control

2.3.1 Surface-Oriented Free-Form Deformation (SOFFD)

K. Singh and E. Kokkevis introduce Surface-Oriented Free-
Form Deformation (SOFFD) in the context of character an-
imation [Singh and Kokkevis 2000].

To deform a shape S, a SOFFD is defined as a triple
(D, R, l): the reference surface R, the driver surface D and
a scalar value l that controls the influence. The SOFFD
process is made of three phases: bind, registration and de-
formation.

In the binding phase, the surfaces R and D are constructed
as low resolution representation of S. The surfaces R and D
are initially identical, and their patches define local coordi-
nate systems MR,i MD,i that correspond to each other.

In the registration phase, the local position of pS in each
patch of R is computed using qS,i = M−1

R,i · pS,i, and the in-
fluence ui of each patch of R at a point pS of S are computed
using the distance di to the ith patch of R :

ui =
wi

P

j wj

where wi =
1

1 + dl
i

(20)

In the deformation phase, the weighted effect are added to
compute the final deformation p′

S a point pS of S:

p
′
S =

X

ui MD,i · qS (21)

Figure 15: Deformation with SOFFD. Image by K. Singh
and E. Kokkevis

2.4 Lattice Control

The limitation of curve or surface controlled space deforma-
tion is the arrangement of the controls along a curve or on
a surface. Note that this statement is untrue only for wires,
which permits the blending of the controls [Singh and Fi-
ume 1998]. Lattice-based space deformations are techniques
that allow control points to be connected along the three
dimensions of space. There are two ways of understanding

15

lattice-based deformation, related to the manner in which
the artist expresses the deformation. Let us denote the space
deformation function by f .

In the first interpretation of lattice-based deformations,
the artist provides pairs of points: a source point and a des-
tination point, (pi,qi). The deformation f will interpolate
or approximate the pairs in this way f(pi) = fp(pi) ≈ qi.
The function fp is a position field. A position field does not
have any physical equivalent to which the artist or scientist
can relate, and requires a certain amount of imagination to
be visualized.

In the second interpretation of lattice-based deformations,
the artist provides a source point and a displacement of that
point, (pi,vi). The deformation f will interpolate or approx-
imate the pairs in this way f(pi) = pi + fv(pi) ≈ pi + vi.
The function fv is a vector field. There is a convenient phys-
ical analogy to a vector field. Vector fields are used in fluid
mechanics to describe the motion of fluids or to describe
fields in electromagnetics [Rutherford 1990; Griffiths 1999].
This analogy is of great help for explaining and creating new
space deformations.

While the effect of using either a position field or a vector
field is equivalent, the vector field also gives more insight
in the process of deforming space: in lattice-based space
deformations, the path that brings the source point onto the
desired target point is a straight translation using a vector.
In this section on lattice-based space deformation, we will
therefore consider the construction of a vector field rather
than a position field whenever possible.

2.4.1 Free-Form Deformation of Solid Geometric Models

The effect of Free-Form Deformation (FFD) on a shape is
to embed this shape in a piece of flexible plastic. The shape
deforms along with the plastic that surrounds it [Sederberg
and Parry 1986].

The idea behind FFD is to interpolate or approximate
vectors defined in a 3d regular lattice. The vectors are then
used to translate space. In their original paper, T. Seder-
berg and S. Parry propose to use the trivariate Bernstein
polynomial as a smoothing filter. Let us denote by vijk the
(l+1)×(m+1)×(n+1) control vectors defined by the artist.
The smoothed vector field is a mapping p ∈ [0, 1]3 7→ R

3.

v(p) =
l
X

i=0

„

i
l

«

(1−x)l−ixi

m
X

j=0

„

j
m

«

(1−y)m−jyj

n
X

k=0

„

k
n

«

(1−z)n−kzk

!!

vijk

(22)

Then the deformation of a point is a translation of that point

pdef = p + v(p) (23)

In order for the deformation to be continuous across the
faces of the FFD cube, the boundary vectors should be set to
zero. A drawback of using the Bernstein polynomial is that a
control vector vijk has a non-local effect on the deformation.
Hence updating the modification of a control vector requires
updating the entire portions of shape within the lattice. For
this reason, J. Griessmair and W. Purgathofer propose to
use B-Splines [Griessmair and Purgathofer 1989].

In commercial software, the popular way to let the artist
specify the control vectors is to let him move the control
points of the lattice, as shown in Figure 16(c). A drawback
often cited about this interface is the visual self occlusion of

the control points. This problem increases with the increase
in resolution of the lattice. Another drawback is that the
manipulation of of lattice of control points requires a strong
sense of spatial perception from the artist. Clearly, practical
FFD manipulation through control-points can only be done
with reasonably small lattices.

(a) (b) (c) (d)

Figure 16: FFD deformation. (a) Lattice of size 33. (b) Ini-
tial shape. (c) The popular interaction with an FFD lattice
consists of displacing the control points. (d) The discrete
vectors.

2.4.2 Extended Free-Form Deformation (EFFD)

Due to the practical limit of the size of the FFD-lattice,
the major restriction of an FFD is strongly related to the
arrangement of control-points in parallelepipeds. The par-
allelepipeds are also called cells. To provide the artist with
more control, S. Coquillart proposes a technique with non-
parallelepipedic and arbitrarily connected cells. The tech-
nique is called Extended Free-Form Deformation (EFFD)
[Coquillart 1990].

To model with EFFD, the artist first builds a lattice by
placing the extended cells anywhere in space, and then ma-
nipulates the cells to deform the shape. An extended cell is
a small FFD of size 44. The transformation from the cell’s
local coordinates s = (u, v, w)> to world coordinates is:

p(s) =
3
X

i=0

„

i
3

«

(1−u)3−iui

3
X

j=0

„

j
3

«

(1−v)3−jvj

3
X

k=0

„

k
3

«

(1−w)3−kwk

!!

pijk

(24)

The eight corners pijk∈{0,3}3 of a cell are freely defined by

the artist. The position of the remaining 44 − 8 are con-
strained by the connection between cells, so that continu-
ity is maintained across boundaries. This is done when
the artist connects the cells. Because the lattice is initially
deformed, finding a point’s coordinates s in a cell is not
straightforward. The local coordinates of a point p in a cell
are found by solving Equation (24) in s using a numerical
iteration. This can be unstable in some cases, although the
authors report they did not encounter such cases in practice.
Once s is found, the translation to apply to p is found by
substituting in Equation (24) the control points pijk with
the control vectors vijk. Note that specifying the control
points, the cells and the control vectors is rather tedious, and
results shown in the paper consist essentially of imprints. An
example is shown in Figure 17.

2.4.3 Preventing Self-Intersection under Free-Form De-
formation

In FFD, EFFD and DMFFD, if the magnitude of a control-
vector is too high, the deformation may produce a self-
intersection of the shape’s surface (see a self-intersection in
Figure 13). Once the shape’s surface self-intersects, there is
no space deformation that can remove the self-intersection.
The appearance of this surface incoherency is the result of

16

(a) (b) (b)

Figure 17: EFFD deformation, images by S. Coquillart. (a)
Control lattice. (b) Deformed lattice. (c) Result: a sand-pie.

a space foldover: the deformation function is a surjection of
R

3 onto R
3, not a bijection. J. Gain and N. Dodgson present

foldover detection tests for DMFFD deformations that are
based on uniform B-Splines [Gain and Dodgson 2001]. They
argue that a necessary and sufficient test is too time consum-
ing, and present an alternative sufficient test. Let us define
qijk, the deformed control points of the lattice. If the deter-
minants of all the following 3 × 3 matrices are all positive,
there is no foldover.

φijk = s det
`

qi±1jk − qijk , qij±1k − qijk , qijk±1 − qijk

´

where the sign s is 1 if (i±1, j±1, k± 1) are clockwise, else
−1. The idea underlying the test is that the determinant of
three column vectors is the volume of the parallelepiped de-
fined by these vectors. A negative volume detects a possible
singularity in the deformation. A technique for efficiently
testing several determinants at once can be found in the
original paper.

This test can then be used to repair the DMFFD. Let us
define (pi,vi), the pairs of points and vectors defining the
DMFFD. If a foldover is detected, the DMFFD is recursively
split into two parts: (pi,vi/2) and (pi + vi/2,vi/2). The
procedure eventually converges, and the series of DMFFDs
obtained are foldover-free and can be applied safely to the
shape.

2.4.4 Free-form Deformations with Lattices of Arbitrary
Topology (SFFD)

R.A. MacCracken and K.I. Joy have established a method
that allows the user to define lattices of arbitrary shape and
topology [MacCracken and Joy 1996]. The method is more
stable than EFFD since it does not rely on a numerical it-
eration technique.

Their method is based on subdivision lattices. We will
refer to it as SFFD, for subdivision FFD. The user defines a
control lattice, L: a set of vertices, edges, faces and cells. A
set of refinement rules are repeatedly applied to L, creating
a sequence of increasingly finer lattices {L1, L2, . . . Ll}. The
union of cells define the deformable space. After the first
subdivision, all cells can be classified into cells of different
type: type-n cells, n ≥ 3. See [MacCracken and Joy 1996]
for the rules.

Although there is no available trivariate parameterization
of the subdivision lattice, the correspondence between world
coordinates and lattice coordinates is possible thanks to the
subdivision procedure. The location of a vertex embedded in
the deformable space is found by identifying which cell con-
tains it. Then, for a type-3 cell, trilinear parameterization is
used. For a type-n cell, the cell is partitioned in 4n tetrahe-
dra, in which the vertex takes a trilinear parameterization.
Each point is tagged with its position in its cell.

Once a point’s location is found in the lattice, finding
the point’s new location is straightforward. When the artist

displaces the control points, the point’s new coordinates are
traced through the subdivision of the deformed lattice.

2.4.5 Scalar-Field Guided Adaptive Shape Deformation
and Animation (SFD)

J. Hua and H. Qin create a technique called SFD [Hua and
Qin 2004]. They define a deformation by attaching space to
the level-sets of an animated scalar field. The artist is offered
three different techniques for animating a scalar field. Since
there are many ways of attaching a point to a level-set of a
scalar field, the authors choose the way that keeps the shape
as rigid as possible.

They define φ(t,p(t)), the scalar field which is animated in
time, t. Since a moving point, p(t), is attached to a level-set
of the scalar field, the value of φ at p is constant in time:

dφ

dt
= 0 (25)

The square of Equation (25) gives a constraint:

(
dφ

dt
)2 = 0 (26)

There are several ways of attaching a point to a level set
while the scalar field is moving. The simplest way would
be to make a point follow the shortest path, found when
the magnitude of the point’s speed, ‖v(t)‖, is minimized.
Another possibility, chosen by the authors, is to minimize
the variation of velocity, so that the deformation is as rigid
as possible. Instead of using the divergence of the speed
to measure rigidity, they use an estimate by averaging the
variation of speed between that point’s speed, v, and its
neighbors’ speed, vk:

(∇ · v)2 ≈ 1

k

X

k

(v − vk)2 (27)

Since this is a constrained optimization problem [Weisstein
], there exists a Lagrange multiplier λ such that:

d

dv
(

d

dt
φ(t,p(t)))2 + λ

d

dv
(∇ · v)2 = ~0 (28)

According to the authors, λ is an experimental constant,
used to balance the flow constraint and speed variation con-
straint. Its value ranges between 0.05 and 0.25. We rear-
range this equation and expand the derivative of φ with the
chain rule:

d

dv

„

(∇φ · v +
∂φ

∂t
)2 + λ(∇ · v)2

«

= ~0 (29)

Let us define v̂, the average of the velocity of all the adjacent
neighbors connected with edges to point p. If we substitute
(∇·v)2 for its approximate given by Equation (27), and then
apply the derivative with respect to v, we obtain:

(∇φ · v +
∂φ

∂t
)∇φ + λ(v − v̂) = ~0 (30)

By solving the system of Equation (30), the updated position
is:

v = v̂ − v̂ · ∇φ + ∂φ
∂t

λ + (∇φ)2
∇φ (31)

The algorithm deforms a set of vertices in n sub-
steps. If n is set to one, the deformation takes
one step:

17

for i = 1 to n do
for all pk in the list of vertices to update do

Update the scalar field φ(t + ∆t,pk).

Deduce ∂φ
∂t

= φ(t+∆t,pk)−φ(t,pk)
∆t

Calculate ∇φ, possibly with finite differences.
Compute v̂ according to neighbors’ velocities.
Deduce v according to Equation (31).
Update vertex positions with pk(t + ∆t) = pk(t) +
v∆t

n
Improve surface representation using a mesh refine-
ment and simplification strategy.
if φ(t + ∆t,pk(t + ∆t)) ≈ φ(t,pk(t)) then

remove pk from the list of vertices to update.
end if

end for
end for

In the first step, since all the speeds are zero, we suggest
that they could be initialized with:

v = −
∂φ
∂t

λ + (∇φ)2
∇φ (32)

(a) (b) (c)

Figure 18: SFD applied to a digitized model of a dinosaur,
images by J. Hua and H. Qin.

Note that this technique requires an explicit surface in or-
der to compute the divergence of the speed. The advantage
of a large set of possible SFD shape operations (as large as
the set of possible animated scalar fields) is at the cost of
making the artist’s task rather tedious: specifying the ani-
mated field does not permit quick and repeated operations
on the shape, necessary for shape modeling.

2.5 Blendable

All deformations can be combined together by combin-
ing the deformations with a partition of unity defined in
space. Some deformation technique however include geo-
metric blending more strongly in their formalism, and define
blending methods that provides a variety of user control and
total freedom in placing the control handles.

2.5.1 Direct Manipulation of Free-Form Deformations
(DMFFD)

The manipulation of individual control points makes FFD
and EFFD tedious methods to use. Two groups of re-
searchers, P. Borrel and D. Bechmann, and W.M. Hsu et
al. propose a similar way of doing direct manipulation of
FFD control points (DMFFD) [Borrel and Bechmann 1991;
Hsu et al. 1992]. The artist specifies translations vi at points
pi in the form (pi,vi). The DMFFD algorithm finds con-
trol vectors that satisfy, if possible, the artist’s desire. Let
us define a single input vector v at point p. The FFD Equa-
tion (22) must satisfy

v = B(p)(vijk) (33)

Let ν = (3(l + 1)(m + 1)(n + 1)). The matrix B is the 3× ν
matrix of the Bernstein coefficients, which are functions of
point p. Note that their method is independent of the chosen
filter: instead of the Bernstein polynomials, W.M. Hsu et
al. use B-Splines and remark that Bernstein polynomials
can be used. P. Borrel and D. Bechmann on the other hand
found that using simple polynomials works just as well as
B-Splines. The size of the vector of control vectors (vijk)
is 3(l + 1)(m + 1)(n + 1). When the artist specifies µ pairs
(pi,vi), the FFD Equation (22) must satisfy a larger set of
equations:

0

B

@

v1

...
vµ

1

C

A
= B ·

0

B

@

vijk

...
vijk

1

C

A
where B =

0

B

@

B(p1)
...

B(pµ)

1

C

A
(34)

This set of equations can either be overdetermined or under
determined. In either case, the matrix B cannot be inverted
in order to find the vijk. The authors use the Moore-Penrose
pseudo-inverse, B+. If the inverse of B> ·B exists, then

B
+ = (B> ·B)−1 ·B> (35)

It is however preferable to compute the Moore-Penrose
pseudo-inverse using singular value decomposition (SVD).
The µ× ν matrix B can be written

B = U ·D · V > (36)

where U is an µ×µ orthogonal matrix, V is an ν×ν orthog-
onal matrix and D is an µ × ν diagonal matrix with real,
non-negative elements in descending order.

B
+ = V ·D−1 · U> (37)

Here, the diagonal terms of D−1 are simply the inverse of
the diagonal terms of D.

(a) (b) (b)

Figure 19: DMFFD deformation, images by W.M. Hsu et al.
(a) Initial scene. (b) The deformation is created according
to the displacement of several vertices of the green object.
(c) Result. The authors do not describe how the vertices on
the green object are selected.

The size of the basis, or, equivalently the number of con-
trol points, has a direct effect on the locality of the deforma-
tion around the selected point. In their approach, P. Borrel
and D. Bechmann pursue the reasoning even further, and
define a technique suitable for n-dimensional objects [Borrel
and Bechmann 1991]. In the context of shape animation,
i.e. in R

4 with time as the fourth dimension, the Bernstein,
B-Splines or simple polynomials are inappropriate. They
propose to use a basis that does not change the initial time,
t0, and final time, tf , of an object:

Bt(p, t)=

0

B

B

B

@

(t− t0)(t− tf)
(t− t0)(t− tf)t
(t− t0)(t− tf)t2

...

1

C

C

C

A

(38)

18

2.5.2 Simple Constrained Deformations for Geometric
Modeling and Interactive Design (scodef)

In simple constrained deformations (scodef), P. Borrel and
A. Rappoport propose to use DMFFD with radial basis func-
tions (RBF) [Borrel and Rappoport 1994]. The artist defines
constraint triplets (pi,vi, ri): a point, a vector that defines
the desired image of the point, and a radius of influence. Let

φi(p) denote the scalar function φ(‖p−pi‖
ri

) for short. The

motivation of using RBF is to keep the deformation local,
in the union of spheres of radius ri around the points pi. A
naive vector field would be:

v(p) =
n
X

i=1

viφi(p) (39)

Unless the points pi are far apart enough, Equation (39) will
not necessarily satisfy the artist’s input v(pi) = vi if the
functions φi overlap. However, this can be made possible by
substituting the vectors vi with suitable vectors wi.

v(p) =
n
X

i=1

wiφi(p) (40)

These vectors wi can be found by solving a set of 3n equa-
tions:

vi = (w1 . . .wn) ·

0

B

@

φ1(pi)
...

φn(pi)

1

C

A
where i ∈ [1, n] (41)

Let us take the transpose, and arrange the n equations in
rows. The following equation is the equivalent of Equa-
tion (34), but with radial basis functions:

0

B

@

v>
1

...
v>

n

1

C

A
=

0

B

@

φ1(p1) . . . φn(p1)
...

φ1(pn) . . . φn(pn)

1

C

A
·

0

B

@

w>
1

...
w>

n

1

C

A
(42)

where i ∈ [1, n]

Let Φ be the n × n square matrix of Equation (42). This
matrix takes the role of B in Equation (34). Since Φ can be
singular, the authors also use its pseudo-inverse Φ

+ to find
the vectors wi.

2.5.3 Dirichlet Free-Form Deformation (DFFD)

With DFFD, L. Moccozet and N. Magnenat-Thalmann pro-
pose a technique that builds the cells of a lattice automat-
ically [Moccozet and Magnenat-Thalmann 1997], relieving
the artist from a tedious task. The lattice cells are the
cells of a Voronöı diagram of the control points, shown in
Figure 20. The location of a point within a cell is neatly
captured by the Sibson coordinates. The naive deformation
of a point p is given by interpolating vectors defined at the
control points with the Sibson coordinate.

p +=
n
X

i=1

ai

a
vi (43)

Where ai is the volume of cell i stolen by p, and a is the vol-
ume of the cell of p. This interpolation is only C0. They use
a method developed by G. Farin [Farin 1990] to define a con-
tinuous parameterization on top of the Sibson coordinates.
The interpolation is made of four steps:

� build the local control net

� build Bézier abscissa

� define Bézier ordinates such that the interpolant is C1

� evaluate the multivariate Bernstein polynomial using
Sibson coordinates.

p3

p4

p2

p1

p5

a

p3

p1

p2

p5

p4
p

(a) (b)

a
a

aa

a5

4

3
2

1

p3

p2

p1

p5

p4

(c) (d)

Figure 20: 2D illustration of the Sibson coordinates (a)
Voronöı cells of the control points. (b) Voronöı diagram is
updated after the insertion of point p. (c) The areas stolen
by the point p from its natural neighbors give the Sibson co-
ordinates ai/a. (d) Local control net, with Bézier abscissa.

2.5.4 Implicit Free-Form Deformations (IFFD)

B. Crespin introduces Implicit Free-Form Deformations
(IFFD) [Crespin 1999]. Note that though it is called im-
plicit, the deformation is explicit. IFFD is rather a tech-
nique inspired by implicit surfaces, a vast branch of com-
puter graphics whose presentation is beyond the scope of
this document [Bajaj et al. 1997]. The field φ ∈ [0, 1] gener-
ated by a skeleton modulates a transformation, M , of points.
The deformation of point p with a single function is:

f(p) = p + φ(p)(M · p− p) (44)

He proposes two ways to combine many deformations simul-
taneously. Let use denote pi the transformation of p with
deformation fi. The first blending is shown in Figure 21. For
M , we have used a translation matrix. The second blendingattempts to solve the continuity issue, but requires the def-
inition of supplementary profile functions, γi. The purpose
of the index i is to assign individual profiles to skeletons.

In order to produce Figure 22, the following γi function
was used:

γi(p)=

8

>

<

>

:

1−(1−σ2)2 if σ∈ [0,1], where σ =
n
X

i=1

φi(p)

1 otherwise

(45)

19

pdef = p +
Pn

i=1(pi−p)φi(p)
P

n
i=1 φi(p)

Reference segments Translated segments

Figure 21: Blending weights based on summed displacement
magnitudes. The deformation is only defined where the
amounts φ are not zero, and is discontinuous at the interface
P

i φi = 0. This blending is useful when the deformed shape
is entirely contained within the field.

pdef = p +
Pn

i=1(pi−p)φi(p)γi(p)
P

n
i=1 φi(p)

(a)

(b)
Reference segments Translated segments

Figure 22: Blending weights based on displacement magni-
tudes and profile functions. For control points, the technique
works well. For segments, there is a discontinuity near their
intersection.

2.5.5 Wires: a Geometric Deformation Technique

K. Singh and E. Fiume introduce wires, a technique which
can easily achieve a rich set of deformations with curves as
control features [Singh and Fiume 1998]. Their technique is
inspired by armatures used by sculptors.

A wire is defined by a quadruple (R, W, s, r): the reference
curve R, the wire curve W, a scaling factor s that controls
bulging around the curve, and a radius of influence r. The
set of reference curves describes the armature embedded in
the initial shape, while the set of wire curves defines the new
pose of the armature.

On a curve C, let pC denote the parameter value for which
C(pC) is the closest point to p. Let us also denote C′(pC)
the tangent vector at that parameter value.

The reference curve, R, generates a scalar field F : R
3 7→

[0, 1]. The function F which decreases with the distance to
R, is equal to 1 along the curve and equals 0 outside a neigh-
borhood of radius r. The algorithm to compute the image
q of a point p influenced by a single deformation consists of
three steps, illustrated in Figure 23:

� Scaling step. The scaling factor is modulated with
F. The image of a point p after scaling is: ps =
R(pR) + (p − R(pR))(1 + sF(p)), where pR denotes
the parameter value for which R(pR) is the closest to
p.

� Rotation step. Let θ be the angle between the tangents
R′(pR) and W′(pR). The point ps is rotated around
axis R′(pR)×W′(pR) about center R(pR) by the mod-
ulated angle θ F(p). This results in point pr

� Translation step. Finally, a translation is modulated to
produce the image
pdef = pr + (W(pR)− R(pR)).

R’(p)R

W’(p)R RW(p)

p
sp

r

R(p)

p

R

3.translate

R
q 1.scaling

2.rotation

W

F>0F=0

Figure 23: Left: deformation of a point by a single wire:
the reference curve is in blue and the wire curve is in red.
Right: deformation of a shape with multiple wires (the three
images on the right by K. Singh and E. Fiume). The first
image shows the initial shape, the second shows the refer-
ence curves and the third shows the wire curves and the
deformed shape.

They propose different blending methods in the case when
a point is subject to multiple wires. These methods work by
taking weighted combinations of the individually deformed
point. Let us denote pi the deformation of p by wire i. Let
∆pi = pi − p. The simplest deformation is:

pdef = p +
Pn

i=1 ∆pi‖∆pi‖
m

P

n
i=1 ‖∆pi‖m

Reference curves Wire curves

Figure 24: Blending weights based on summed displacement
magnitudes. This blending is not free from artifacts: notice
the creases around the intersection in the upper-right figure.

The scalar m is defined by the artist. This expression is
not defined when m is negative and ‖∆pi‖ is zero. To fix
this, they suggest to omit the wires for which this is the case.
Their second solution is to use another blending defined for
both positive and negative values of m:

In order to use unmoved wires as anchors that hold the
surface, they use Fi(p) instead of ∆pi as a measure of prox-
imity:

Other capabilities of wires can be found in the original
paper [Singh and Fiume 1998]. Note that important to the
algorithm is computing the distance from each curve to each
deformed surface point.

20

pdef = p +
Pn

i=1 ∆pi

Q

j 6=i ‖∆pj‖
|m|

P

n
i=1

Q

j 6=i ‖∆pj‖
|m|

Reference curves Wire curves

Figure 25: Blending weights based on multiplied displace-
ment magnitudes. The deformation is defined at the inter-
section of the reference curves.

pdef = p +
Pn

i=1 ∆piFi(p)m

P

n
i=1 Fi(p)m

Reference curves Wire curves

Figure 26: Blending weights based on influence function.
The unmoved wire holds space still. This blending is not free
from artifacts: notice the creases around the intersection in
the upper-right figure.

2.5.6 Sweepers: Modeling with Gesture

Sweepers is a frameworks for shape modeling by ges-
ture[Angelidis et al. 2004b]. Note that there exist similar
work [Gain and Marais 2005; Kil et al. 2006]. The input
that defines transformations is a gesture, obtained with a
mouse or hand tracking device. A simple space deforma-
tion can be defined with a 4 × 4 transformation matrix M
(translation, rotation, scale, etc.) whose effect is spatially
weighted with a scalar field ϕ(p) ∈ [0, 1]. The function ϕ
encodes the amount of transformation at p ∈ R

3. To de-
fine a tool, a funtion ϕ is defined by composing a smooth
function µ to the distance to a shape.

µλ(d) =

0 if λ ≤ d
1 + (d

λ
)3(d

λ
(15− 6 d

λ
)− 10) if d < λ

(46)

This function is C2-continuous and antisymmetric about 0.5.
The tools proposed in the original papers are a ball tool, a
filled ellipsoid tool, or more generic mesh tools.

There are several ways to weight a transformation with
a weight, and sweepers uses fractions of transformation, by
using the exponential and logarithm of matrices (see a com-
plete overview in [Alexa 2002]). Note that as opposed to
the numerical method proposed by Alexa operator, sweep-
ers do not evaluate exp and log numerically, since some cases
reduce to more efficient and elegant closed-form formulas.
Thus the transformation M can be weighted with ϕ as fol-
lows:

f̈(p) = exp(ϕ(p) log M) · p (47)

The deformation f̈ is naive since it can create a foldover.
For example, if M is a translation of large magnitude, it can
map points within the support of ϕ onto points outside from
the support of ϕ, thus folding space onto itself.

Single Sweeper: By decomposing the transformation into
a series of s small enough transformations, and applying
each of them to the result of the previous one, foldovers
are avoided, for the same reason that the solution to a first
order differential equation is foldover-free (there is no accel-
eration). The decomposition in s steps for a general trans-
formation is expressed as follows:

f(p) =
s−1

Ω
k=0

fk(p)

where fk(p) = exp(ϕk(p)
s

log M) · p
and ϕk(p) = ϕ(exp(− k

s
log M) · p)

(48)

The value returned by ϕk is that of the scalar field ϕ trans-
formed by exp k

s
log M , a fraction of M . It can be shown that

there exists a finite number of steps such that the deforma-
tion is foldover-free (see [Angelidis 2005]). We propose the
following as a lower bound to the required number of steps s:

max
p
‖∇ϕ(p)‖ max

l∈[1,8]
‖log(M) · pl‖ < s (49)

where pl∈[1,8] are the corners of a box oustide which the
function ϕ equals zero.

Efficiency: In a single tool scenario, the transformations
convenient to input are translations, non-uniform and uni-
form scaling and rotations. In these cases, there is a closed-
form to the logarithm and exponential of matrices. If M is
a translation of vector d, the minimum number of steps is:

max
p
‖γ(p)‖ ‖d‖ < s (50)

The s vertex and normal deformations are:

fk(p) = p + ϕk(p)
s

d (51)

gk(n) = n + 1
s
(γk × n)× d (52)

If M is a uniform scaling operation of center c and scaling
factor σ, the minimum number of steps is:

max
p
‖γ(p)‖ σ log(σ)dmax < s (53)

where dmax is the largest distance between a point in the de-
formed area and the center c, approximated using a bound-

ing box. Let ~χ = log(σ)
s

(p − c). The s vertex and normal
deformations are:

fk(p) = p + (σ
ϕk(p)

s − 1)(p− c) (54)

gk(n) = n + (γk × n)× ~χ (55)

If M is a rotation of angle θ, center r and axis v =
(vx, vy, vz)

>, the minimum number of steps is:

max
p
‖γ(p)‖ θrmax < s (56)

where rmax is the distance between the axis of rotation and
the farthest point from it, approximated using a bounding
box. The s vertex deformations are:

fk(p) = p + (cos
ϕkθ

s
− 1)ξ × n + sin

ϕkθ

s
ξ (57)

where ξ = v × (p− r)

The s normal deformations are:

gk(n) = (n · v)v + v × (cos(h)n× v − sin(h)n)
+ θγ × (n× ξ

+ ((cos(h)− 1)(n× ξ) · v
+ sin(h)n · ξ)v)

where h = ϕkθ
s

(58)

21

Figure 27: Translatiom, scale and rotation.

Simultaneous Sweepers: Let us consider n operations, de-
fined with Mi∈[1,n] and ϕi∈[1,n]. A naive way to achieve
simultaneous deformations is

f(p) = exp(

n
X

i=1

ϕi(p) log Mi) · p (59)

This function is naive because it adds the effect of each op-
eration. The following expression provides a normalized and
smooth3 combination of all the transformations at any point
p in space4:
(

p if
P

k ϕk = 0

exp(
Pn

i=1

“

1−
Q

k(1−ϕk)
P

k ϕk
ϕi log Mi

”

· p) otherwise
(60)

where 1
P

k ϕk
is required to produce a normalized combina-

tion of the transformations and 1−
Qn

k=1(1−ϕk(p)) smooths
the deformation in the entire space. Figure 29 shows a com-
parison between additive blending of Equation (59) and the
correct one of Equation (60). In Figure 28, we show the
blending of sweepers in a secenario similar to other blending
presented in this section.

Reference segments Translated segments

Figure 28: Blending with sweepers. The resulting surface is
nice and smooth, as opposed to surfaces in Figures 24 25,
26, 21 and 22.

Equation (60) may produces foldovers for similar reasons
to the case of a single tool, with Equation (47). If we de-
compose it into small steps, foldovers can be avoided:

f(p) =
s−1

Ω
k=0

fk(p)

where fk(p) =

8

>

>

>

<

>

>

>

:

p if
P

j ϕk
j = 0

otherwise

exp(

n
X

i=1

1−Qj(1− ϕk
j)

P

j ϕk
j

ϕk
i log Mi

!

) · p

and ϕk
j (p) = exp(ϕj((

k
s

log M−1
j)) · p

(61)
The following expression is a lower bound to the required
number of steps, generalizing the single tool condition (see
justification in [Angelidis 2005]):

X

j

max
p

(‖∇ϕj(p)‖) max
l∈[1,8]

˛

˛

˛

˛log Mj · plj

˛

˛

˛

˛ < s (62)

3as smooth as the ϕi.
4The operator

L

expresses a repetive sum:
Ln

i=1 Mi = M1 ⊕

M2 ⊕ · · · ⊕ Mn.

(a)

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

(b)

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

1

2

3

-2

0

2

-2

0

2

Figure 29: Blending of three scalar fields. To illustrate the
behaviour of our blending in this figure, we directly combine
the scalar fields instead of using them to modulate a trans-
formation. (a) Adding the scalar fields. (b) By multiplying
each field with (1−Q(1−ϕk))/

P

ϕk, the sum of the fields
is normalized.

where plj∈[1,8] are the corners of a bounding box oustide
which the function ϕj equals zero. For an operation sym-
metric about a plane, the transformation matrices are of the
same type, thus blending them leads to simple expressions
(see [Angelidis 2005]).

The set of possible deformations with sweepers is quite
large because of the arbitrary shape of the tools and also be-
cause many tools’ deformations can be blended. The shapes
shown in Figure 30 were modeled in real-time in one hour
at most, and were all made starting with a sphere.

Figures 30(a) and 30(b) show the use of the multi-tool to
achieve smooth and symmetric objects. Figure 30(d) shows
that sharp features can be easily modeled. Figures 30(c)
and 30(i) show the advantage of foldover-free deformations,
as the artist did not have to concentrate on avoiding self-
intersections: our deformations do not change the topology
of space and thus preserve the topology of the initial object.

2.5.7 Swirling-sweepers: Constant Volume Modeling

In a non-virtual modeling context, one of the most important
factors which affects the artist’s technique is the amount of
available material. The notion of an amount of material is
not only familiar to professional artists, but also to children
who experience it with Play-Doh

�

at kindergarten, and to
adults through everyday life experience. A shape modeling
technique that preserves volume will take advantage of this,
and increase the intuitiveness of use. In Swirling-Sweepers,
the artist inputs a position h and translation t, and the
technique will create a deformation that transforms h into
h + t while the volume of the shape is preserved implicitly,
simply because the deformation satisfies a differential prop-
erty. Thus the volume of the shape does not require to be
computed, and the deformation can be applied to an open
surface.

Swirling-sweepers use swirls as building blocks. A swirl
twists space locally without compression or dilation (see
proof in [Angelidis et al. 2004a]): it preserves volume. A
swirl is defined by a point c, a rotation of angle θ around
an axis v (see Figure 31), and a scalar function ϕ describing

22

the amount of swirl

ϕ(p, λ) = µ(
‖p− c‖

λ
) (63)

where µ(d) =

0 if 1 ≤ d
1 + d3(d(15− 6d)− 10) if 1 > d

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 30: All these shapes were modeled starting with a
sphere, in at most one hour. In (c), the first modeling step
was to squash the sphere into a very thin disk. In (g), eye-
balls were added.

The effect of a swirl is defined using the exponential and
logarithm of matrices (see a complete overview in ??), for
which there are closed-forms given bellow:

f(p) = exp(ϕ(p, λ) log R) · p (64)

where R denote the 4 × 4 matrix of a rotation of center c,
axis v and angle θ. This equation could have been defined in
several equivalent ways, for example using quaternions or an
algebraic formula. The above notation is however convenient
to combine multiple swirls:

f(p) =

exp(

n−1
X

i=0

(ϕi(p, λ) log Ri))

!

· p (65)

θ

c c
v v

λ

Figure 31: The effect on a sphere of a swirl centered at c,
with a rotation angle θ around ~v. The two shapes have the
same volume.

We now define how to place the above swirls to transform
h into h + t. Let us consider n points, ci, on the circle of
center h, and radius r lying in a plane perpendicular to t. To
these points correspond n consistently-oriented unit tangent
vectors vi (see Figure 32). Each pair, (ci,vi), together with
an angle, θi, define a rotation. Along with radii of influence
λi = 2r, we can define n swirls. The radius of the circle r,
is left to the user to choose. The following value for θi will
transform h exactly into h+t (see justification in [Angelidis
et al. 2004a]):

θi =
2‖t‖
nr

(66)

hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 32: By arranging n basic swirls in a circle, a more
complex deformation is achieved. In the rightmost image:
with 8 swirls, there are no visible artifacts due to the discrete
number of swirls.

We show in Figure 32 the effect of the tool for different
values of n; in practice, we use 8 swirls. If the magnitude
of the input vector t is too large, the deformation of Equa-
tion (65) will produce a self-intersecting surface, and will not
preserve volume accurately. To correct this, it is necessary
to subdivide t into smaller vectors for the same reasons that
applies to solving discretely a first order differential equa-
tions. The number of steps must be proportional to the
speed and inversely proportional to the size of the tool. We
use:

s = max(1, d4‖t‖/re) (67)

23

As the circle sweeps space, it defines a cylinder. Thus the
swirling-sweeper is made of ns basic deformations. Figure 33
illustrates this decomposition applied to a shape. We sum-
marize here the swirling-sweepers algorithm:

Input point h, translation t, and radius r
Compute the number of required steps s

Compute the angle of each step, θi = 2‖t‖
nrs

for each step k from 0 to s− 1 do
for each point p in the tool’s bounding box do

M = 0
for each swirl i from 0 to n− 1 do

M += ϕi
k(p) log Ri,k

end for
p = (exp M) · p

end for
end for

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 33: A volume preserving deformation is obtained by
decomposing a translation into circles of swirls. 3 steps have
been used for this illustration. As the artist pulls the surface,
the shape gets thinner. The selected point’s transformation
is precisely controlled.

The point cik denotes the center of the ith swirl of the
kth ring of swirls. For efficiency, a table of the basic-swirl
centers, cik, and a table of the rotation matrices, log Ri,k,
are precomputed. We have a closed-form for the logarithm
of the involved matrix, given in Equations (68) and (69),
saving an otherwise expensive numerical approximation:

n = θivi

m = ci,k × n (68)

log Mi,k =

0

B

@

0 −nz ny mx

nz 0 −nx my

−ny nx 0 mz

0 0 0 0

1

C

A
(69)

Since these matrices almost antisymmetric, they are handled
as pairs of vectors, (n,m). Once M is computed, we use
a closed-form for computing exp M . Since the matrix M
is a weighted sum of matrices log Ri,k, the matrix M is of
the form of Equation (69), and can be represented with a
pair (nM ,mM). If nM = 0, then exp M is a translation of
vector ~mM . Else, if the dot product mM · nM = 0, then
exp M is a rotation of center c, angle θ axis v, as given by
Equation (70):

c = ω×m

‖ω‖2

θ = ‖nM‖
v = nM/θ

(70)

Finally, in the remaining cases, we denote l = ‖~nM‖, and we
use Equation (71) (see Appendix 2.5.7 for efficiency):

exp M = I + M + 1−cos l
l2

M2 + l−sin l
l3

M3 (71)

Symmetrical objects can be easily modeled by introducing
a plane of symmetry about which the tool is reflected. The
shapes shown in Figure 34 were modeled in real-time in half
an hour at most, and were all made starting with a sphere.
For instance 80 swirling-sweepers have been used to model
the alien.

Figure 34: Examples of models modeled with swirling-
sweepers. The mouse, the goblin, the alien and the tree
have respectively 27607, 25509, 40495 and 38420 vertices.
These objects were modeled in less than 30 min by one of
the authors. Eyeballs have been added. The shapes volumes
are respectively 101.422%, 99.993%, 101.158% and 103.633%
of the initial sphere, due to the finite number of steps, and
to our choice of shape representation.

3 Spape Deformation and Modeling

3.1 Desirable Properties for Modeling

The large number of space deformation techniques can lead
quickly to the naive conclusion that in any shape model-
ing by deformation scenario, the limitation of a technique
may be simply circumvented by using another technique.
This reasoning presents several flaws. Firstly, from the point
of view of a programmer, the amount of effort required to

24

implement a space deformation Swiss-army knife for shape
modeling would be considerable. Secondly, from the point
of view of an artist, choosing quickly the most appropriate
space deformation would require a vast amount of knowledge
of the underlying mathematics of many techniques, which
is a skill that should not be required. Thirdly, from a re-
searcher’s point of view, all space deformation techniques
are not necessarily designed for the specific purpose of shape
modeling, and there are surely efficient ways of dealing with
specific problems. Here a few guidelines for designing space
deformation techniques for the purpose of interactive shape
modeling.

Firstly, the subset of space deformations whose effect on
a shape is not local makes these techniques unsuitable for
the task of modeling shapes, since an artist’s operation on
a visible portion of the shape will have effects on portions
that are further away [Barr 1984; Blanc 1994; Chang and
Rockwood 1994; Lazarus et al. 1994]. Controlling the effect
of global deformations using weights would requires a certain
amount of craftsmanship from the artist.

Secondly, a large number of space deformation techniques
requires the artist to specify a rather large number of
control parameters [Sederberg and Parry 1986; Coquillart
1990; MacCracken and Joy 1996; Moccozet and Magnenat-
Thalmann 1997; Hirota et al. 1999; Hua and Qin 2004]. We
believe that for modeling, increasing the number of param-
eters does not increase the amount of control by an artist,
but rather it makes the task longer and more tedious. Many
techniques illustrate their capabilities on imported models,
that were either digitized or pre-modeled with conventional
modeling techniques with a few exceptions [Decaudin 1996;
Hsu et al. 1992; Llamas et al. 2003]. The absence of a model
entirely developed in one piece with a single technique may
be evidence that the technique is tedious to use for the ded-
icated purpose of modeling shapes.

Finally, many space deformation techniques do not pre-
vent a surface from self-intersecting after deformation, aside
from a couple of exceptions [Mason and Wyvill 2001; Gain
and Dodgson 2001]. A self-intersecting surface is a rather
annoying situation in modeling with deformation, since it is
impossible for a space deformation to remove a previously
introduced self-intersection. Thus we believe that the fol-
lowing are reasonable guidelines for deformation operations
for shape modeling:

� Its effective span should be controllable.

� Its input parameters should be reduced to their strict
minimum: a gesture.

� It should be predictable, in accordance with a
metaphor.

� It should be foldover-free.

� It should be sufficiently fast for existing computing de-
vices.

3.2 A Shape Description for Modeling

Because space deformations operations are independent
from the shape description, several choices are available to
represent a shape being deformed: mesh [Gain and Dodg-
son 1999], particles [Pauly et al. 2003], deformed raytracing
[Barr 1984], hybrid [Enright et al. 2002], and all the popular
shape descriptions: subdivision surfaces, NURBS and more.
In the context of shape modeling, the number of deforma-
tions is possibly excessively large, and issues related to such

excess have to be taken into consideration when defining a
shape description. This section presents a shape description
for interactive modeling which supports high deformation
and does not break when highly stretched [Angelidis et al.
2004b].

A simple way of representing a deformable shape is to
place a set of samples on the surface of the shape: this
makes the task of deforming the shape as straightforward
as deforming the points on its surface. Points are discrete
surface samples, and need to be somehow connected using
splatting, interpolation or approximation scheme in order to
display a continuous surface.

The presented method uses vertices connected with tri-
angles. Connectivity provides convenient 2D boundary in-
formation for rendering the surface as well as surface neigh-
borhood information, which enables the artist to define very
thin membranes without having them vanish, as shown in
Figure 30(c). The use of triangular C0 patches circumvents
issues related to non-regular vertices and smoothness main-
tenance across the boundaries that join patches. Also, cur-
rent hardware handles polygons very efficiently, which is rel-
evant to us since interactivity is among our objectives. The
reader however should be aware that point-sampled geome-
try is an active area of research [Pauly et al. 2003].

The possibly large number of deformations applied by an
artist requires some minimum surface sampling density. In
order to maintains this density, the presented method re-
quires the deformation to be capable of being split into sub-
steps.

Let us assume the scene is initialized with a polygonal
model, e.g. a sphere with a homogeneous density of nearly
equilateral triangles. To fetch the vertices that are deformed,
a query is done with the tool’s bounding box. Conveniently,
this bounding box is also used in Equation 49. Since the
principle of our swept deformations is to subdivide the input
gesture into a series of smaller ones, all the transformations
applied to the vertices are bounded. To take advantage of
this decomposition in steps, we apply a modified version of
a more generic algorithm [Gain and Dodgson 1999]. Our
method requires keeping two vertices and two normals per
vertex, corresponding to the previous and following state of
some small step operation fk. Loosely speaking, our surface-
updating algorithm assumes that smooth curves run on the
surface, and that the available vertices and normals should
be able to represent them well enough. If this is not the
case after deformation, then it means the surface is under-
sampled. On the other hand, if an edge is well enough rep-
resented by a single sample, then it is collapsed.

Let us consider an edge e defined by two vertices (v0,v1)
with normals (n0,n1), and the deformed edge e′ defined by
vertices (v′

0,v
′
1) with normals (n′

0,n
′
1). In addition to the

conditions in [Gain and Dodgson 1999] based on edge length
and angle between normals, we also base the choice of split-
ting edge e0 on the error between the edge and a fictitious
vertex, which belongs to a smooth curve on the surface. The
fictitious vertex is used only for measuring the error, and is
not a means of interpolating the vertices. If the error be-
tween the fictitious vertex and the edge is too large, the edge
e is split, and the new vertex and normal are deformed. On
the other hand if the fictitious vertex represents the edge e0

well enough, then edge e is collapsed, and the new vertex is
deformed. We define the fictitious vertex as the mid-vertex
of a C1 curve, since vertices and normals only provide 1rst

order information about the surface. The following cubic
polynomial curve interpolates the vertices v′

0 and v′
1 with

25

corresponding shape tangents t0 and t1, defined below:

c(u) = (v′
0(1 + 2u) + t0u)(1− u2)+

(v′
1(1 + 2(1− u))− t1(1− u))(1− (1− u)2)

(72)

The only constraint on tangent ti is to be perpendicular to
the corresponding normal ni. The following choice defines
tangents of magnitude proportional to the distance between
the vertices:

t0 = g − g · n′
0 n′

0

t1 = g − g · n′
1 n′

1 where g = v′
1 − v′

0
(73)

With the above tangents, the expression of the middle vertex
simplifies:

c(0.5) = (v′
0 + v

′
1 + (g · n′

0 − g · n′
1)/4)/2 (74)

With the fictitious vertex c(0.5), the tests to decide
whether an edge should be split or collapsed can now be
defined:

Too-long edge: An edge e0 is too long if at least one of the
following conditions is met:

� The edge is longer than Lmax, the size of a grid-cell.
This condition keeps a minimum surface density, so that
the deformation can be caught by the net of vertices if
the coating thickness λj is greater than Lmax.

� The angle between the normals n′
0 and n′

1 is larger than
a constant θmax. This condition keeps a minimum cur-
vature sampling.

� The distance between the fictitious vertex and the mid-
vertex of e′ is too large (we used Lmax/20). This condi-
tion prevents the sampling from folding on itself, which
would produce multiple sampling layers of the same sur-
face.

Too-short edge: An edge e′ is too short if all of the fol-
lowing conditions are met:

� The edge’s length is shorter than Lmin (we used
Lmax/2).

� The angle between the normals n′
0 and n′

1 is smaller
than a constant θmin.

� The distance between the fictitious vertex and the mid-
vertex of e′ is too small (we used Lmin/20).

Also, to avoid excessively small edges, an edge is merged
regardless of previous conditions if it is too small (we used
Lmin/20).

We stress that the procedure for updating the mesh is
applied at each small step, rather than after the user’s de-
formation function has been applied. Because vertex dis-
placements are bounded by the foldover-free conditions,
the update of our shape description does not suffer from
problems related to updating a greatly distorted triangula-
tion. Figure 35 shows a twist on a simple U-shape. Fig-
ure 36 shows the algorithm preserving a fine triangulation
only where required. Figure 37 shows the algorithm at
work in a more practical situation. The procedure out-
line is:

Compute the number of steps required s
for each step k do

Deform the points, and hold their previous values
for each too-long edge do

split the edge and deform the new point.
end for
for each too-short edge do

collapse the edge and deform the new point.
end for

end for

Limitation: With the updated mesh method, we choose to
ignore the history of functions applied to the shape by the
artist. Thus we “collapse” the history by freezing it in the
current shape. To explain the major consequence of this, let
us suppose the scene at a time tk, such that the shape S(tk)
is shown to the user. The next deformation produced by
the artist with the mouse is function ftk 7→tk+1 , and all the
mesh renements and simplications are performed in S(tk).
This is however an approximation: ideally the last operation
should be concatenated to the history of deformations, and
the whole series should be applied to the initial shape S(t0),

i.e.
n

Ω
i=0

fti 7→ti+1 should be applied to each new vertex. This

would however become more and more time consuming as
the sequence of deformations gets longer (n gets larger), and
the modeling software would eventually become unusable.

Figure 35: Example of our mesh-updating algorithm on a
highly twisted U-Shape. The close-up shows a sharp feature,
with finer elongated triangles.

Figure 36: Behaviour of our mesh-updating algorithm on an
already punched sphere. The decimation accompanying the
second puch simplifies the small triangles of the first punch.
The tool has been removed for a better visualization.

4 Comparing Techniques

Space deformations can be compared according to several
criteria, thus the sequential presentation of Section 2 does
not give the entire picture of the landscape of space defor-
mations. We will identify objective criteria to attempt com-
paring techniques on a fair ground.

� Modeling philosophy: for the task of deforming a shape,
the intended usage of a technique can be either to use
many simple deformations, or a few but complex de-
formations. For example, a deformation that require
the user to define a complex control structure will most
likely be of the “few but complex deformations” kind.
These approaches tend to be most efficient in the con-
text of animation.

26

Figure 37: Close-up of the goat. Notice the large triangles
on the cheek and the fine ones on the ear. The initial shape
is a sphere.

� Connectivity of control space: deformations define sev-
eral control parameters of type position, direction,
affine transform, thickness, and more. Some of these
controls have a direct relation with the Euclidean space,
and we accord more importance to these since they are
manipulated by the user in a geometric sense. The con-
nectivity of the Euclidean controls can be 0D, 1D, 2D
or 3D, corresponding to the notion of parameter/point,
a curve, a surface, or a block of jello. For example, a
mouse can handle a 0D control, and will need to be used
repeatedly to control higher dimensions, as opposed to
a curve control interface [Grossman et al. 2003] that
can contol a 1D control space all at once. Note that
this is different from the dimension of the input re-
lated to hardware limitations: e.g. a mouse inputs 2D
coordinates, while a curve control interface inputs 3D
coordinates.

� Free Control Blending: all deformations can be com-
bined together by combining the deformations with a
partition of unity defined in space (see Section 1.1).
Some deformation techniques include geometric blend-
ing more strongly in their formalism, and define blend-
ing methods that provides a variety of user control and
a level of freedom in placing the control handles. These
methods are have advantages as techniques with 3D
connectivity control space, without any cumbersome
structural constrain.

� Differential properties: by taking into account the time
parameter, a deformation can be understood as a con-
tinuum deformation. By satisfying some differential
properties, a deformation can implicitly preserve some
properties of the shape being deformed such as sur-
face self-interection avoidance, preserving volume or
dynamics.

5 Conclusion

Space deformation is a set of very generic techniques that
may be used in the context of modeling, rendering [Coleman
and Singh 2004; Mei et al. 2005], animation and simulation.
This overview focuses on the context of shape modeling, and
we also present a method for representing the shape being
deformed. Recent work has shown that it is possible to de-
fine properties of the shape with differential properties of
the deformation. This may be a promissing direction for

future work. Also, the similarity between space deforma-
tion and vector fields makes space deformation a pedagogical
tool for understanding continuum mechanics, and they can
be somehow used for handcrafting physical phenomena. For
example, swirling-sweepers [Angelidis et al. 2004a] shares
similarities with vortex-based smoke simulation [Angelidis
and Neyret 2005].

Acknowledgments Many thanks to Marie-Paule Cani, Ge-
off Wyvill and Scott King for their contribution to the work
presented in this chapter.

References

Alexa, M. 2002. Linear Combination of Transformations.
ACM Trans. Graph. 21, 3 (Jul), 380–387.

Angelidis, A., and Neyret, F. 2005. Simulation of Smoke
Based on Vortex Filament Primitives. In SCA’05: Proc.
of the 2005 Symposium on Computer Animation, 87–96.

Angelidis, A., Cani, M.-P., Wyvill, G., and King, S.
2004. Swirling-sweepers: Constant-volume modeling. In
Pacific Graphics 2004, IEEE, 10–15. Best paper award at
PG04.

Angelidis, A., Wyvill, G., and Cani, M.-P. 2004.
Sweepers: Swept user-defined tools for modeling by de-
formation. In Proceedings of Shape Modeling and Appli-
cations, IEEE, 63–73. Best paper award at SMI04.

Angelidis, A. 2005. Shape Modeling by Swept Space De-
formation. PhD thesis, University of Otago.

Bajaj, C., Blinn, J., Bloomenthal, J., Cani-Gascuel,
M.-P., Rockwood, A., Wyvill, B., and Wyvill,
G. 1997. Introduction to Implicit Surfaces. Morgan-
Kaufmann.

Barr, A. 1984. Global and Local Deformations of
Solid Primitives. In ACM Trans. Graph. (Proc of SIG-
GRAPH’84), 21–30.

Blanc, C. 1994. A generic implementation of axial proce-
dural deformation techniques. In Graphics Gems, vol. 5,
249–256. Academic Press.

Bloomenthal, J. 1990. Calculation of reference frames
along a space curve. Graphics gems, 567–571.

Borrel, P., and Bechmann, D. 1991. Deformation of
n-dimensional objects. In Proceedings of the first sympo-
sium on Solid modeling foundations and CAD/CAM ap-
plications, 351–369.

Borrel, P., and Rappoport, A. 1994. Simple constrained
deformations for geometric modeling and interactive de-
sign. In ACM Transactions on Graphics, vol. 13(2), 137–
155.

Capell, S., Green, S., Curless, B., Duchamp, T., and
Popović, Z. 2002. Interactive Skeleton-Driven Dynamic
Deformations. ACM Trans. Graph. 21, 3 (Jul), 586–593.

Chang, Y.-K., and Rockwood, A. P. 1994. A general-
ized de Casteljau approach to 3d free-form deformation. In
Proceedings of SIGGRAPH’94, ACM Press / ACM SIG-
GRAPH, Computer Graphics Proceedings, Annual Con-
ference Series, ACM, 257–260.

27

Reference aka Section Phylosophy Connectivity Blendable Differential
properties

[Barr 1984] 2.1.1 0D 7
[Blanc 1994] 2.1.2 0D 7

[Decaudin 1996] 2.1.3 m/s 0D 7
[Kurzion and Yagel 1997] Ray-deflectors 2.1.4 m/s 0D 7

[Llamas et al. 2003] Twister 2.1.5 m/s 0D 7
[Chang and Rockwood 1994] 2.2.1 f/c 1D 7

[Lazarus et al. 1994] 2.2.2 f/c 1D 7
[Crespin 1999] 2.2.2 f/c 1D,2D 7

[Mason and Wyvill 2001] Blendeformer 2.2.3 m/s 0D,1D 7 foldover-free
[Capell et al. 2002] 2.2.4 f/c 1D 7 dynamics

[Singh and Kokkevis 2000] SOFFD 2.3.1 f/c 2D 7 foldover-free
[Sederberg and Parry 1986] FFD 2.4.1 f/c 3D 7

[Coquillart 1990] EFFD 2.4.2 f/c 3D 7
[Gain and Dodgson 2001] 2.4.3 m/s 3D 7 foldover-free

[MacCracken and Joy 1996] SFFD 2.4.4 f/c 3D 7
[Hua and Qin 2004] SFD 2.4.5 f/c 3D 7

[Borrel and Bechmann 1991; Hsu et al. 1992] DMFFD 2.5.1 m/s 0D X

[Borrel and Rappoport 1994] scodef 2.5.2 f/c 3D X

[Moccozet and Magnenat-Thalmann 1997] DFFD 2.5.3 f/c 0D X

[Crespin 1999] IFFD 2.5.4 m/s 0D X

[Singh and Fiume 1998] Wires 2.5.5 f/c 1D X

[Angelidis et al. 2004b] Sweepers 2.5.6 m/s 0D X foldover-free
[Gain and Marais 2005] 2.5.6 m/s 0D X foldover-free
[Angelidis et al. 2004a] Swirling-

sweepers
2.5.7 m/s 0D X volume-preserving

Table 1: f/c means “few complex” and m/s means “many simple”. All deformations are blendable in a sense, thus blendable
above means that the deformation provide additionnal blending features.

Coleman, P., and Singh, K. 2004. Ryan: rendering your
animation nonlinearly projected. In NPAR ’04, ACM,
129–156.

Coquillart, S. 1990. Extended free-form deformation:
A sculpturing tool for 3d geometric modeling. In Pro-
ceedings of SIGGRAPH’90, ACM Press / ACM SIG-
GRAPH, vol. 24(4) of Computer Graphics Proceedings,
Annual Conference Series, ACM, 187–195.

Crespin, B. 1999. Implicit free-form deformations. In Pro-
ceedings of the Fourth International Workshop on Implicit
Surfaces, 17–24.

Decaudin, P. 1996. Geometric deformation by merging
a 3d object with a simple shape. In Graphics Interface,
55–60.

Enright, D., Fedkiw, R., Ferziger, J., and Mitchell,
I. 2002. A Hybrid Particle Level Set Method for Improved
Interface Capturing. J. Comput. Phys. 183, 1, 83–116.

Farin, G. 1990. Surfaces over Dirichlet tessellations. Com-
puter Aided Geometric Design 7(1-4) (June), 281–292.

Gain, J., and Dodgson, N. 1999. Adaptive refinement and
decimation under free-form deformation. Eurographics’99
7, 4 (April), 13–15.

Gain, J., and Dodgson, N. 2001. Preventing self-
intersection under free-form deformation. IEEE Trans-
actions on Visualization and Computer Graphics 7, 4
(October-December), 289–298.

Gain, J., and Marais, P. 2005. Warp sculpting. IEEE
Transactions on Visualization and Computer Graphics
11(2) (Apr), 217–227.

Griessmair, J., and Purgathofer, W. 1989. Deforma-
tion of solids with trivariate b-splines. In Eurographics
Conference Proceedings, Elsevier Science, 137–148.

Griffiths, D. J. 1999. Introduction to Electrodynamics,
third ed. Prentice Hall.

Grossman, T., Balakrishnan, R., and Singh, K. 2003.
An interface for creating and manipulating curves using
a high degree-of-freedom input device. In CHI 2003 Con-
ference Proceedings, 185–192.

Hirota, G., Maheshwari, R., and Lin, M. 1999. Fast
volume-preserving free form deformation using multi-level
optimization. In Proceedings of the fifth ACM symposium
on Solid modeling and applications, ACM, 234–245.

Hsu, W. M., Hughes, J. F., and Kaufman, H. 1992.
Direct manipulation of free-form deformations. In Pro-
ceedings of SIGGRAPH’92, ACM Press / ACM SIG-
GRAPH, vol. 26(2) of Computer Graphics Proceedings,
Annual Conference Series, ACM, 177–184.

Hua, J., and Qin, H. 2004. Scalar-field-guided adaptive
shape deformation and animation. The Visual Computer
1, 1 (April), 47–66.

Kil, Y., Renzulli, P., Kreylos, O., Hamann, B.,
Monno, G., and Staadt, O. 2006. 3d warp brush mod-
eling. Journal of Computer and Graphics, ELSEVIER
30(4).

28

Kurzion, Y., and Yagel, R. 1997. Interactive space defor-
mation with hardware assisted rendering. IEEE Computer
Graphics and Applications 17(5) (September/October),
66–77.

Lazarus, F., Coquillart, S., and Jancène, P. 1994.
Axial deformations: an intuitive deformation technique.
In Computer-Aided Design, vol. 26(8), 607–613.

Llamas, I., Kim, B., Gargus, J., Rossignac, J., and
Shaw, C. 2003. Twister: A space-warp operator for
the two-handed editing of 3d shapes. In SIGGRAPH,
vol. 22(3) of ACM Transactions on Graphics, Annual
Conference Series, ACM, 663–668.

MacCracken, R. A., and Joy, K. I. 1996. Free-form de-
formations with lattices of arbitrary topology. In Proceed-
ings of SIGGRAPH’96, ACM Press / ACM SIGGRAPH,
Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 181–188.

Mason, D., and Wyvill, G. 2001. Blendeforming: Ray
traceable localized foldover-free space deformation. In
Proceedings of Computer Graphics International (CGI),
183–190.

Mei, C., Popescu, V., and Sacks, E. 2005. The occlusion
camera. In Eurographics 2005, vol. 24(3).

Moccozet, L., and Magnenat-Thalmann, N. 1997.
Dirichlet free-form deformation and their application to
hand simulation. In Computer Animation’97, 93–102.

Pauly, M., Keiser, R., Kobbelt, L., and Gross, M.
2003. Shape modeling with point-sampled geometry. In
Proceedings of SIGGRAPH’03, vol. 22(3), ACM, 641–650.

Rutherford, A. 1990. Vectors, Tensors and the Basic
Equations of Fluid Mechanics. Dover.

Schein, S., and Elber, G. 2004. Discontinuous free form
deformations. In Proceedings of Pacific Graphics, IEEE,
227–236.

Sederberg, T., and Parry, S. 1986. Free-form defor-
mation of solid geometric models. In Proceedings of SIG-
GRAPH’86, ACM Press / ACM SIGGRAPH, vol. 20(4) of
Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 151–160.

Singh, K., and Fiume, E. 1998. Wires: a geometric defor-
mation technique. In Computer graphics, Proceedings of
SIGGRAPH’98, ACM Press / ACM SIGGRAPH, Com-
puter Graphics Proceedings, Annual Conference Series,
ACM, 405–414.

Singh, K., and Kokkevis, E. 2000. Skinning Charac-
ters using Surface Oriented Free-Form Deformations”. In
Graphics Interface, 35–42.

Weisstein, E. Lagrange multipliers. From
Mathworld – A Wolfram Web Ressource
http://mathworld.wolfram.com/LagrangeMultipliers.html.

29

