

Psychorealism

The realism of the human psyche, expressed through the medium of art and animation.

Overview

Nonlinear projection

- Cords: Geometry with physical attributes

dinear perspective

Good approximation of human visual system Conceptually simple and predictable

- Aids depth perception
- Efficient graphics pipeline

Nonlinear projection

Extend visual range

- Avoid disjoint images for complex scenes
- Artistic expression

Nonlinear projection model

- C, M, V are the eye-space and perspective, viewport matrices for a linear perspective camera.
- A point in the scene P thus linearly projects under the camera to $\langle x, y\rangle$ in the image at depth z where, $\langle x, y, z>=P C M V$.
- Lets call CMV, E.

Master and lackey cameras

For P to appear in master camera b, as P appears in lackey camera i :

$$
? E_{b}=P E_{i}
$$

$$
P^{\prime}=P C_{i} M_{i} V_{i}\left(C_{b} M_{b} V_{b}\right)^{-1}
$$

$$
A_{i}=C_{i} M_{i} V_{i}\left(C_{b} M_{b} V_{b}\right)^{-1}
$$

Master and lackey cameras

Given weight $w_{i p}$ for lackey camera i point P deforms to P^{\prime} :

$$
P^{\prime}=P+P\left(w_{i P}\left(A_{i}-I\right)\right)
$$

...and for many lackey cameras

$$
P^{\prime}=P+\sum_{i=1}^{n} P\left(w_{i} P\left(A_{i}-I\right)\right)
$$

Defining projection weights

Positional

Examples

Depth Control

xamples

Examples

 yes Depth Control

Constraints

No Constraints
With Constraints

Constraints

To see constraint frame R_{f} in lackey as R_{t} in master camera :

$$
E_{i} ? \widehat{E_{b}^{-1}} \quad A_{i}=C_{i} M_{i} V_{i}(\text { Con })\left(C_{b} M_{b} V_{b}\right)^{-1}
$$

... where Con is a constraint matrix that captures the affine transformation that maps $R_{f} E_{i}$ to $R_{t} E_{b}$.
(a) Pillar, R_{t} (lackey view)
(b) Constraint deformed pillar, R_{t}, R_{f} (boss view)

Constraints

To see constraint frame R_{f} in lackey as R_{t} in master camera :
Con $=\left(\operatorname{Cartesianize}\left(R_{f} C_{i} M_{i} V_{i}\right)\right)^{-1}$ Cartesianize $\left(R_{t} C_{b} M_{b} V_{b}\right)$
...in general Con is defined as an RBF interpolation of multiple constraints per scene object, per camera.

Shadows

V

Cords: a physical 3D curve

Cord: A geometric curve primitive that bends and wraps around scene geometry with physical attributes of stiffness and elasticity.

- Desired results are rooted in physics, under precise animator control.

Motivation

Appealing sparse geometric representations are artistically more challenging than real geometry.

Cord Detinition

Defined by a guide curve $f(t)$, stiffiness, elasticity, length and 3D scene geometry.
Cord must interactively bend and wrap around geometry in response to animator control of Cord parameters.

Cord Algorithm

Initialize Cord to f(0).
Grow the Cord by stepping along f.
if (ray from Cord to fintersects geometry) grow cord to intersection else
grow cord by a stiffness factor along the ray
Adjust Cord to given length, elasticity.

Cord Analysis

Cord is represented by polyline $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2} \ldots$ where

$$
p_{i}=p_{i-1}+\text { stiffness } * s *\left(f(i * s)-p_{i-1}\right) \text { and } p_{0}=f(0) .
$$

We wish to prove that the Cord is a continuous limit curve ($a=$ stiffiness, $m=t / s$) as step-size $s \rightarrow 0$ or $m \rightarrow a$.

$$
p_{m}=f(0) *(1-a * t / m)^{m}+(a * t / m) *\left(\sum_{i=1}^{m} f(i * t / m) *(1-a * t / m)^{m-i}\right)
$$

We show using Riemann sums that:

$$
g(t)=f(0) * e^{-a * t}+a * e^{-a * t} *\left(\int_{0}^{t} f(x) e^{a x} d x\right)
$$

Cords can thus be analytically defined for parametric polynomialiguide curves.

Wide and thick Cords

- Parameterized sparse geometric representation. -Extension to higher dimensional primitives.

Acknowledgements

Chris Landreth, Dave Baas.
Byan programming and animation crew.
Support: MITACS, NSERC, CCA, NFB Canada, Seneca College, Alias, Pixar.
http://www.dgp.toronto.edu/~patrick/ryanTech

Projection Wiadgets

...control of artistic perspective using the I-Bar widget.

Nonlinear projection goals

- Local linear perspective
- Continuous nonlinear projections

Artistic control of composition, projection

- Coherent shading, shadows, lighting
- Interactive and incremental
- Handle complex scenes

