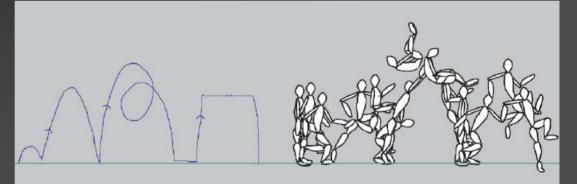
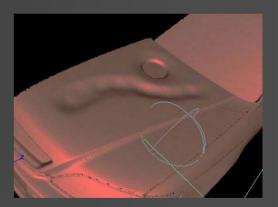

Mathematical Surface Representation for Conceptual Design


Principal investigator: Karan Singh (Toronto) Team members: Ravin Balakrishnan (Toronto) Eugene Fiume (Toronto) Pierre Poulin (Montreal) Michiel van de Panne (UBC) Richard (Hao) Zhang (SFU)

How quickly and effectively can a designer transform a mental concept into digital form and manipulate it in an intuitive manner?

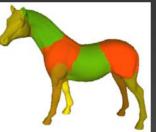
Example: Sketch-based modeling



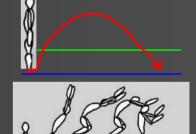
[Thorne, Burke & van de Panne 04]

Industrial Importance

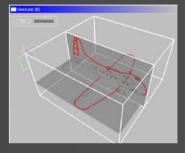
- Designers almost exclusively prefer traditional design techniques, e.g., sculpting, sketching
- Model manipulation, processing, evaluation, manufacturing rely on modeling tools that operate on digital representations
- Our goals are two-fold
 - Develop novel design and control paradigms that are intuitive, effective, and interactive
 - Fundamentally decouple designer's creative process from underlying constraints specific to the digital representation



Feature-based Approach


Focus: Develop new mathematical representations or adapt existing ones to capture the essence of shape as perceived by a designer

Features capture essence of shape/movement as we perceive it

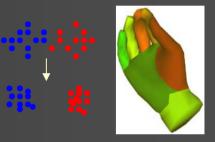


Features can be sketched out or extracted

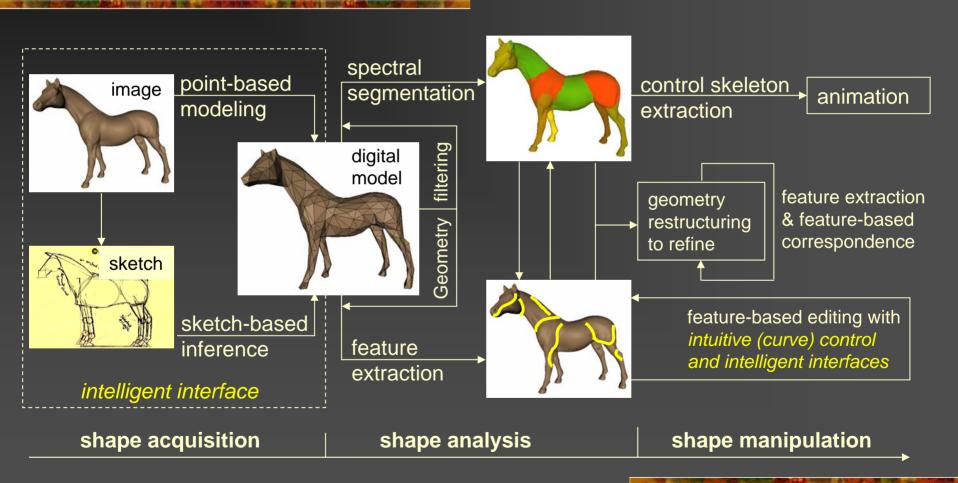
In our work, features will be used to abstract, describe, infer, differentiate, and control our digital models

On-going Projects

- Sketch-based modeling & animation (UBC + Toronto)
 - Sketched motions [Thorne, Burke, van de Panne 04]
 - Suggestive interface for wireframe 3D sketching [Tsang, Balakrishnan, Singh 04]
 - Sketch classification and 3D shape inference
- Intuitive control of shape & motion (Toronto)
 - High DOF input device [Grossman, Balakrishnan, Singh 03]
 - Cords keyframe curve control with physical properties [Coleman & Singh 04]

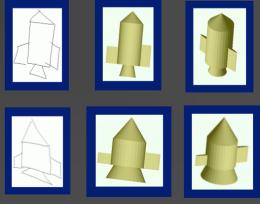


On-going Projects


Geometric signal processing & feature analysis (SFU + Toronto)

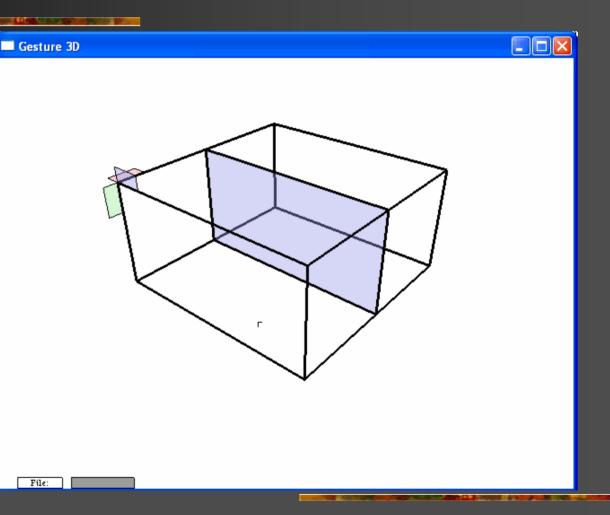
- Spectral mesh segmentation [Liu & Zhang 04]
- Geometry filtering [Zhang 04, Zhang & Fiume 03]
- Feature-based 3D shape correspondence
- Geometry restructuring (Toronto + Montreal)
 - Feature-based retargeting of geometry [Singh et al. 04]
- 3D shape inference & reconstruction
 - Point-based modeling from images [Poulin et al. 03] [Epstein, M. Granger-Piché, and P. Poulin 04]
 - Interactive space carving for 3D shape construction [Granger-Piché, Epstein, Poulin 04]

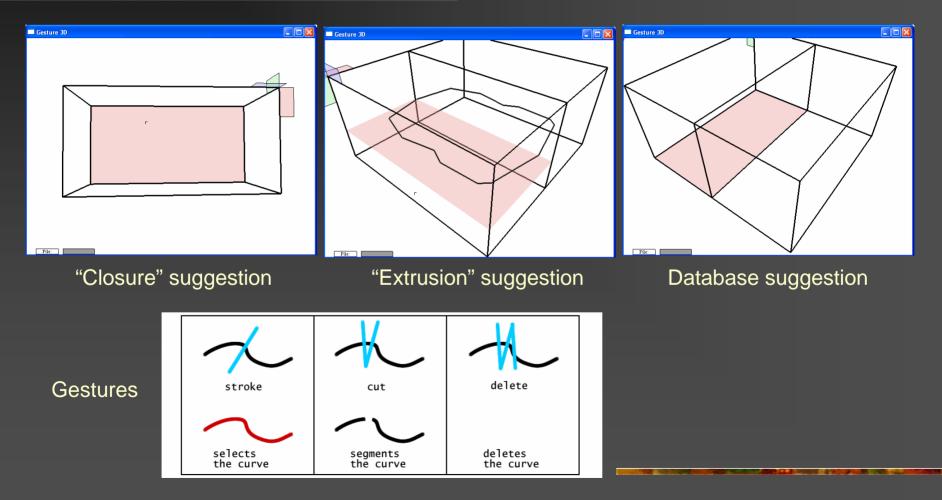
How do these fit together?



Sketch-based Modeling

Question: How to go from a sketch to a digital representation?

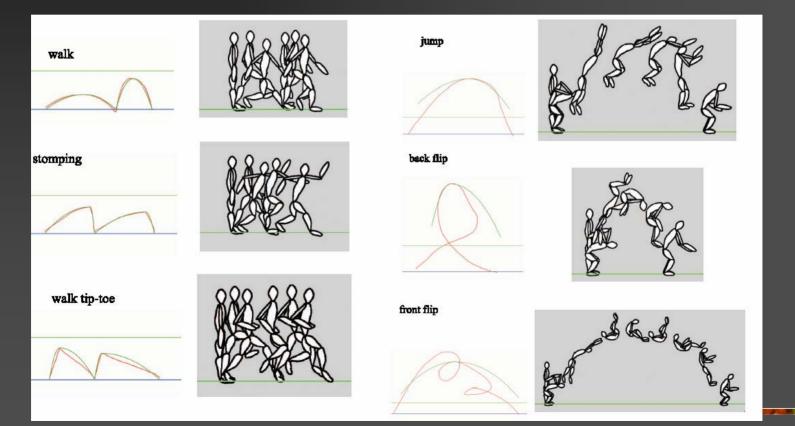

- User-friendly sketch interface
- Model easy to refine and reuse
- Interface should be suggestive
 - Incorporate prior knowledge: e.g., assume object class is known a priori — "I am drawing a car"
 - Suggestion search should be robust



Suggestive wireframe 3D sketching

- Intuitive drawing on spatially integrated planes
- Image-guided sketching: e.g., curve pinning, snapping, ...
- Gesture inputs
- Suggestions

Specific System Features


Sketch Classification and 3D Inference

Sketch-based shape descriptors + similarity metric

- Discriminative yet robust descriptors
- Include context information
- Model less dependent on stroke structures
- → K-means feature classifiers (current)
- Relying on training set of free-form sketches
- Find "most likely" parsing of sketch into known model
 - Maximum likelihood parsing of full sketch, instead of just local features
 - Conditional Random Fields (future work)

Sketching Motion: Motion Doodles

Gestures controlled by sketches

Video: Motion Doodles

Motion Doodles: An Interface for Sketching Character Motion

[Thorne, Burke, van de Panne, SIGGRAPH 2004]

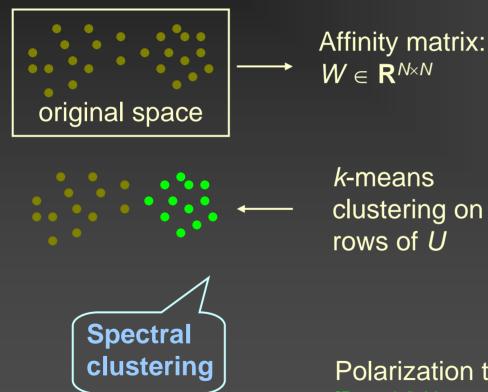
Cords: Keyframe Control of Curves

- Motivation: precise and interactive control of strings, wires, rubber bands, etc., with physical appearance properties
- Contributions:
 - Precise control for keyframe animation
 - Automatic bending and wrapping around 3D scene geometry
 - Models length, stiffness, and elasticity
 - Intuitive parameter space for predictable response
 - Easy to code algorithms

Video: Cords (in *Ryan*)

Cords: Keyframe Control of Curves with Physical Properties

Patrick Coleman and Karan Singh Dynamic Graphics Project University of Toronto


Ryan: SIGGRAPH 2004 Electronic Theater Jury Prize

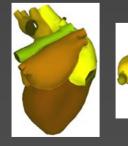
Cords — Future Work

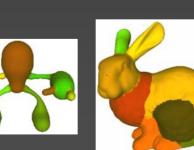
- Generation algorithms incorporating the analytic form
- Higher order continuity along cords
- Modeling of surfaces
- Hybrid models incorporating physical simulation

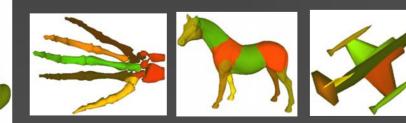
Spectral Geometry Processing

Polarization theorem [Brand & Huang 03]

Eigenvalue **Decomposition:** $W = E \Lambda E^T$


> Find *m*-dimensional embedding


 $U = [e_1, e_2, \dots e_m]$



Segmentation via Spectral Clustering

- One instance of context-based 3D shape analysis
- Point entities become mesh faces or vertex 1-rings
- Affinities honor *minima rule* (emphasize concavity)
- Nyström method with specific subsampling algorithm improves asymptotic complexity from O(n²logn) to O(sn logn)
- Post-smoothing of cut boundary using morphological processing

[Liu & Zhang 04]

Current and Future Work

Replace k-means by more advanced clustering

and the second second

- Careful study of polarization phenomenon
- Feature extraction via spectral clustering
- Context-based shape correspondence
 - Robust iterative closest point (ICP) in spectral domain
 - Combination of feature estimation, correspondence identification, and rigid or non-rigid transformation search
- Can we handle sketches?

Point-based Modeling from Images

- Capturing complex reality instead of a mental concept
- Utilizing point-sampled geometric representation
 - Points are the simplest possible primitives increasingly popular
 - Facilitate easy and interactive improvement of object quality
- Tight integration of point-based representation and user interactivity
- User-guided point-shape reconstruction via interactive system for high-quality result and rendering

Video: Points from Images

[Poulin et al. 03]

Publications (2003 – 2004)

- P. Coleman, K. Singh, "Cords: Keyframe Control of Curves with Physical Properties," SIGGRAPH 2004 Sketches.
- E. Epstein, M. Granger-Piché, and P. Poulin, "Exploiting Mirrors in Interactive Reconstruction with Structured Light," *Proc. Vision, Modeling, and Visualization* 2004, November 2004, to appear.
- M. Granger-Piché, E. Epstein, P. Poulin. "Interactive Hierarchical Space Carving with Projector-based Calibrations." *Proc. Vision, Modeling and Visualization* 2004, November 2004, to appear.
- T. Grossman, R. Balakrishnan, K. Singh. "An Interface for Creating and Manipulating Curves Using a High Degree-of-Freedom Input Device," ACM CHI 2003, pp. 185-192.
- R. Liu and H. Zhang, "3D Mesh Segmentation through Spectral Clustering," *Proc. Pacific Graphics* 2004, pp. 298-305.

Publications (2003 – 2004)

- P. Poulin, M. Stamminger, F. Duranleau, M-C. Frasson, G. Drettakis, "Interactive Point-Based Modeling of Complex Objects from Images," *Proc. Graphics Interface* 2003.
- K Singh, H. K. Pedersen, V. Krishnamurthy, "Feature-Based Retargeting of Parameterized Geometry," *IEEE 2004 Geometric Modeling and Processing (GMP 2004), Theory and Applications*, pp. 163-172.
- S. Tsang, R. Balakrishnan, K. Singh, A. Ranjan, "A Suggestive Interface for Image Guided 3D Sketching," ACM CHI 2004, pp. 591-598.
- M. Thorne, D. Burke, and M. van de Panne, "Motion Doodles: An Interface for Sketching Character Motion," ACM SIGGRAPH 2004.
- H. Zhang, "Discrete Combinatorial Laplacian Operators for Digital Geometry Processing," *Proc. SIAM Conference on Geometric Design and Computing*, 2004, to appear.
- H. Zhang and Eugene Fiume, "Butterworth Filtering and Implicit Fairing of Irregular Meshes," *Proc. Pacific Graphics 2003*, pp. 502-506.

Industrial Partners

Company	Specialty	Headquarter	URL
Alias Systems Corp.	3D Modeling & Animation (Maya)	Toronto, ON, Canada	www.alias.com/
ARANZ Group of Companies	3D scanning and Modeling	New Zealand	www.aranz.com/
Arius 3D Inc.	3D scanning and Modeling	Mississauga, ON, Canada	www.arius3d.com/
Actuality Systems Inc.	Spatial 3D Visualization	Burlington, MA, USA	actualitysystems.com/
Electronic Arts	Computer Games and Entertainment	Redwood City, CA, USA	www.ea.com/
Measureand Inc.	3D Measuring Sensors Tech.	Fredericton, NB, Canada	www.measurand.com/

Acknowledgement

- MITACS for financial support
- Karan Singh, Michiel van de Panne, Pierre Poulin, Patrick Coleman, Steve Tsang for providing slide samples, video, and papers
- SFU graduate students: Frank Liu and Varun Jain
- All the researchers and students involved
- FAS student travel funding

Project URL: http://www.dgp.toronto.edu/~karan/project_website/index.htm