Industrial motivations: Conceptual Automotive Styling Tools (CAST)

Karan Singh

Dynamic Graphics Project www.dgp.toronto.edu

Conceptual modeling

• What is conceptual modeling?

The transformation a mental design concept into a digital object, that is easy to refine and reuse.

Conceptual modeling

• Why is it important?

Humans have an audio IN and OUT, a video IN but no explicit video OUT!

- Desirable properties of a conceptual modeler.
- What makes automotive design unique.
- Existing modeling trends.
- A proposed workflow for conceptual automotive design.

Conceptual design desirables

- Abstraction from underlying surface math.
- Invite creative exploration.
- Allow for precision and constraints.
- Workflow mimics traditional design media.
- Leverages domain expertise.
- Intuitive and interactive.

- Is free-form and exploratory.
- Smooth shapes: C² continuity.

• Embodies geometric, surface and style constraints.

• Character or flow lines captured intrinsically.

• Flexible re-use of legacy data.

• Interfaces digital and physical modeling.

• Well developed design paradigms rooted in physical media.

- Is free-form and exploratory.
- Smooth shapes: C² continuity.
- Embodies geometric, surface and style constraints.
- Character or flow lines captured intrinsically.
- Flexible re-use of legacy data.
- Interfaces digital and physical modeling.
- Well developed design paradigms rooted in physical media.

Object Representations: parametric patches

- Advantages
 - Smoothness.
 - Precision (Analytic shapes).
 - Curves (Character, flow lines).
- Limitations
 - Patches get in the way (Patch layout, trims).
 - Smoothness across patch boundaries.
 - Editing paradigms are restricted by topology.

Existing Paradigms: points and meshes

- Advantages
 - Smooth dense meshes are now feasible.
 - Few restrictions on topology.
 - More flexible editing paradigms possible.
 - Conversion to and from physical data is easy.
- Limitations
 - Points and Meshes are not intrinsically "smooth".
 - Too free (no analytic shapes).
 - No concept of curves or character lines.

An automotive designers toolbox

- Ideas.
- Sketches.
- Clay/foam.
- Engineering Criteria.
- Sweeps.
- Steels.
- Paint box.

Whats missing? A refinable digital 3D model.

An automotive design workflow proposal

Rough digital model Input

- Design collateral (sketches, clay, parameteric models).
- Feature lines.
- Engineering and stylistic constraints.

CHALLENGE: Co-locating and registering salient design content within a common 3D space.

Rough digital model

Digital model refinement tools

- Constraint preserving global deformations.
- Cut and paste.
- Feature based editing.
- Local deformations.

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu Local

- Tape Drawing.
- ShapeTape.
- Steels, Sweeps.
- Pen, puck and tablet.
- Haptic sculpting.
- 3D scanning and printing.

• Tape Drawing.

Physical tape

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu Digital tape

- ShapeTape.
- Steels, Sweeps.

Steel

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu ShapeTape

- Steels, Sweeps.
- Pen, puck and tablet.

Physical sweep

Digital sweep

• Haptic sculpting.

Motion Capture.

• 3D scanning and printing.

Putting it together

dgp

Acknowledgements

Alias Inc. Paraform Metris Inc. MITACS Ravin Balakrishnan Bill Buxton Venkat Krishnamurthy Hans Pedersen

