Topic 12:

Texture Mapping

- Motivation
- Sources of texture
- Texture coordinates
- Bump mapping, mip-mapping \& env mapping

Texture sources: Photographs

Texture sources: Procedural

Texture sources: Solid textures

Texture sources: Synthesized

(e)

(g)

(i)

(h)

(f)

(j)

Original

Synthesized

Synthesized

Texture coordinates

How does one establish correspondence? (UV mapping)

Aliasing During Texture Mapping

MIP-Mapping: Basic Idea

Given a polygon, use the texture image, where the projected polygon best matches the size of the polygon on screen.

Bump mapping

Bump Map

Environment Map

Render a 3D scene as viewed from a central viewpoint in all directions (as projected onto a sphere or cube). Then use this rendered image as an environment texture... an approximation to the appearance of highly reflective objects.

Environment Mapping Cube

Environment Mapping

Local vs. Global Illumination

Local Illumination Models
e.g. Phong

- Model source from a light reflected once off a surface towards the eye
- Indirect light is included with an ad hoc "ambient" term which is normally constant across the scene

Global Illumination Models
e.g. ray tracing or radiosity (both are incomplete)

- Try to measure light propagation in the scene
- Model interaction between objects and other objects, objects and their environment

All surfaces are not created equal

Specular surfaces

- e.g. mirrors, glass balls
- An idealized model provides 'perfect' reflection Incident ray is reflected back as a ray in a single direction

Diffuse surfaces

- e.g. flat paint, chalk
- Lambertian surfaces
- Incident light is scattered equally in all directions

General reflectance model: BRDF

Categories of light transport

Specular-Specular
Specular-Diffuse
Diffuse-Diffuse
Diffuse-Specular

Ray Tracing

Traces path of specularly reflected or transmitted (refracted) rays through environment
Rays are infinitely thin
Don't disperse
Signature: shiny objects exhibiting sharp, multiple reflections

Transport E-S-S-S-D-L.

Ray Tracing

Unifies in one framework

- Hidden surface removal
- Shadow computation
- Reflection of light
- Refraction of light
- Global specular interaction

Topic 13:

Basic Ray Tracing

- Introduction to ray tracing
- Computing rays
- Computing intersections
- ray-triangle
- ray-polygon
- ray-quadric
- Computing normals
- Evaluating shading model
- Spawning rays
- Incorporating transmission
- refraction
- ray-spawning \& refraction

Rasterization vs. Ray Tracing

Rasterization:

-project geometry onto image.
-pixel color computed by local illumination (direct lighting).

Ray-Tracing:

-project image pixels (backwards) onto scene. -pixel color determined based on direct light as well indirectly by recursively following promising lights path of the ray.

Ray Tracing: Basic Idea

Ray Tracing: Advantages

- Customizable: modular approach for ray sampling, ray object Intersections and reflectance models.
- Variety of visual effects: shadows, reflections, refractions, indirect illumination, depth of field etc.
- Parallelizable: each ray path is independent.
- Speed vs. Accuracy trade-off: \# and recursive depth of rays cast.

Ray Tracing: Basic Algorithm

For each pixel q
\{
compute \boldsymbol{r}, the ray from the eye through \boldsymbol{q};
find first intersection of \boldsymbol{r} with the scene, a point \boldsymbol{p};
estimate light reaching \boldsymbol{p};
estimate light transmitted from \boldsymbol{p} to \boldsymbol{q} along \boldsymbol{r};
\}

Ray Tracing Imagery

Ray Tracing vs. Radiosity

Topic 13:

Basic Ray Tracing

- Introduction to ray tracing
- Computing rays
- Computing intersections

- Computing normals

- Evaluating shading model
- Spawning rays
- ray-triangle
- ray-polygon
- ray-quadric

Computing the Ray Through a Pixel: Steps

Pixel \mathbf{q} in local camera coords $[\mathbf{x}, \mathbf{y}, \mathbf{d}, \mathbf{1}]^{\top}$
Let \mathbf{C} be camera to world transform

Sanity check $\mathbf{e}=\mathbf{C}[\mathbf{0 , 0 , 0 , 1}]^{\top}$
pixel \mathbf{q} at (\mathbf{x}, \mathbf{y}) on screen is thus $\mathbf{C}[\mathbf{x}, \mathbf{y}, \mathbf{d}, \mathbf{1}]^{\top}$
Ray \mathbf{r} has origin at \mathbf{q} and direction $(\mathbf{q - e}) /|\mathbf{q - e}|$.

Topic 13:

Basic Ray Tracing

- Introduction to ray tracing
- Computing rays
- Computing intersections
- Computing normals
- Evaluating shading model
- Spawning rays
- ray-triangle
- ray-polygon
- ray-quadric
- the scene signature

Computing Ray-Triangle Intersections

Let ray be defined parameterically as $\mathbf{q}+\mathrm{rt}$ for $\mathrm{t}>=0$.

Compute plane of triangle <p1,p2,p3> as a point p1 and normal $\mathrm{n}=(\mathrm{p} 2-\mathrm{p} 1) \mathbf{x}(\mathrm{p} 3-\mathrm{p} 2)$. Now (p-p1).n=0 is equation of plane.

Compute the ray-plane intersection value t by solving

$$
(q+r t-p 1) \cdot n=0=>t=(p 1-q) \cdot n /(r . n)
$$

Check if intersection point at the \mathbf{t} above falls within triangle.

Computing Ray-Quadric Intersections

Implicit equation for quadrics is

$$
\mathbf{p}^{\top} \mathbf{Q p}=\mathbf{0} \text { where } \mathbf{Q} \text { is a } 4 \times 4 \text { matrix of coefficients. }
$$

Substituting the ray equation $\mathbf{q}+$ rt for \mathbf{p} gives us a quadratic equation in t, whose roots are the intersection points.

Computing Ray-Sphere Intersections

$(\mathbf{c - q})^{2}-((\mathbf{c}-\mathbf{q}) \cdot \mathbf{r})^{2}=d^{2}-k^{2}$
Solve for k, if it exists.

Intersections:
$\mathbf{q}+\mathbf{r}((\mathbf{c}-\mathbf{q}) \cdot \mathbf{r}+/-k)$

Intersecting Rays \& Composite Objects

- Intersect ray with component objects
- Process the intersections ordered by depth to return intersection pairs with the object.

Ray Intersection: Efficiency Considerations

Speed-up the intersection process.

- Ignore object that clearly don't intersect.
- Use proxy geometry.
- Subdivide and structure space hierarchically.
- Project volume onto image to ignore entire Sets of rays.

Topic 13:

Basic Ray Tracing

- Introduction to ray tracing
- Computing rays
- Computing intersections
- Computing normals
- Evaluating shading model
- Spawning rays
- Incornorating transmission
- ray-triangle
- ray-polygon
- ray-quadric
- the scene signature

Computing the Normal at a Hit Point

- Polygon Mesh: interpolate normals like with Phong Shading.
- Implicit surface $f(p)=0$: normal is $\operatorname{gradient}(f)(p)$.
- Explicit parametric surface $f(a, b): \delta f(s, b) / \delta s X \delta f(a, t) / \delta t$
- Affinely transformed shape:

$$
\begin{aligned}
& n^{T} \times t=n^{T} \times M_{l}^{-1} M_{l} \times t \\
& n^{T} \times t=n^{T} \times M_{l}^{-1} M_{l} \times t=\left(M_{l}^{-1 T} \times n\right)^{T}\left(M_{l} \times t\right) \\
& n^{T} \times t=\left(M_{l}^{-1 T} \times n\right)^{T} \times t^{\prime} \\
& n^{\prime}=M_{l}^{-1 T} \times n
\end{aligned}
$$

Topic 13:

Basic Ray Tracing

- Introduction to ray tracing
- Computing rays
- Computing intersections
- ray-triangle
- ray-polygon
- ray-quadric
- the scene signature
- Computing normals
- Evaluating shading model
- Spawning rays
- Incorporating transmission

Evaluating the Shading Model

$$
\begin{array}{rll}
I(q) & = & L(n, v, l) \\
\text { Intensity at } q & = & +\underset{\text { phong local illum. }}{ } \\
& + \text { global specular illum. } .
\end{array}
$$

Reflected ray has hit object

Transmitted ray generated for transparent objects

No reflection

Single reflection

Double reflection

Topic 13:

Basic Ray Tracing

- Introduction to ray tracing
- Computing rays
- Computing intersections
- ray-triangle
- ray-polygon
- ray-quadric
- the scene signature
- Computing normals
- Evaluating shading model
- Spawning rays
- Incorporating transmission
- refraction
- ray-spawning \& refraction

Ray Tracing with Refraction

For transparent objects spawn an additional ray along the refracted direction and recursively return the light contributed due to refraction.

local illumination reflection refraction

Ray Tracing Deficiencies

- Ignores light transport mechanisms involving diffuse surfaces.
- Intersection computation time can be long and recursive algorithm can lead to exponential complexity.

Ray Tracing Efficiency Improvements

Bounding volumes
Spatial subdivision

- Octrees
- BSP

Ray Tracing Improvements: Caustics

Ray Tracing Improvements: Image Quality

Backwards ray tracing

- Trace from the light to the surfaces and then from the eye to the surfaces
- "shower" scene with light and then collect it
- "Where does light go?" vs "Where does light come from?"
- Good for caustics
- Transport E-S - S - S - D - S - S - S - L

Ray Tracing Improvements: Image Quality

Cone tracing

- Models some dispersion effects

Distributed Ray Tracing

- Super sample each ray
- Blurred reflections, refractions
- Soft shadows
- Depth of field
- Motion blur

Stochastic Ray Tracing

Antialiasing - Supersampling

Radiosity

- Diffuse interaction within a closed environment
- Theoretically sound
- View independent
- No specular interactions
- Color bleeding visual effects
- Transport E-D - D-D - L

