Topic 8:

Lighting & Reflection models

- Lighting & reflection
- The Phong reflection model
	- diffuse component
	- ambient component
	- specular component

Showtime

- Welcome back
- Professor Singh is away for the next 3 lectures (including this one).
	- If you need something desperately contact me
	- diwlevin@cs.toronto.edu
- You should have your midterm marks (emailed to UT email)
- We will release solutions to the midterm
- Assignment 2 due March $9th$
- Assignment 3 will be available roughly the same time
- Midterm, A1, A2 TA office hours
	- **Thursday March 1st 2pm-3pm**
	- **Friday March 2nd 3pm-4pm**

Spot the differences

Illumination

•The transport of luminous flux from light sources between points via direct and indirect paths

Lighting

•The process of computing the luminous intensity reflected from a specified 3-D point

Shading

•The process of assigning a color to a pixel

Illumination Models

- Simple approximations of light transport
- Physical models of light transport

Two Components of Illumination

Light Sources

- Emission Spectrum (color)
- Geometry (position and direction)
- Directional Attenuation

Surface Properties (Reflectors)

- Reflectance Spectrum (color)
- Geometry (position, orientation, and micro-structure)
- Absorption
- Transmission

Main sources of light:

- Point source
- Directional Light
- Spotlight

Point Light

 \bullet

• light originates at a point

Directional Light (point light at infinity)

- light rays are parallel
- Rays hit a planar surface at identical angles

Spot Light

 \bullet

 \bullet

• point light with limited angles

Bessmeltsey et al.

Point Light

- light originates at a point
- defined by **location** only

Directional Light (point light at infinity)

- light rays are parallel
- Rays hit a planar surface at identical angles
- defined by **direction** only

Spot Light

- point light with limited angles
- defined by **location, direction, and angle range**

Bessmeltsey et al.

Point Light Sources

The point light source emits rays in radial directions from its source. A point light source is a fair approximation to a local light source such as a light bulb.

The direction of the light to each point on a surface changes when a point light source is used. Thus, a normalized vector to the light emitter must be computed for each point that is illuminated.

Directional Light Sources

All of the rays from a directional light source have a common direction, and no point of origin. It is as if the light source was infinitely far away from the surface that it is illuminating. Sunlight is an example of an infinite light source.

The direction from a surface to a light source is important for computing the light reflected from the surface. With a directional light source this direction is a constant for every surface. A directional light source can be colored.

Other Light Sources

Spotlights

- Point source whose intensity falls off away from a given direction
- Requires a color, a point, a direction, parameters that control the rate of fall off

Area Light Sources

- Light source occupies a 2-D area (usually a polygon or disk)
- Generates *soft* shadows

Extended Light Sources

- Spherical Light Source
- Generates soft shadows

Ambient Light Source

Even though an object in a scene is not directly lit it will still be visible. This is because light is reflected indirectly from nearby objects. A simple *hack* that is commonly used to model this indirect illumination is to use of an *ambient light source*. Ambient light has no spatial or directional characteristics. The amount of ambient light incident on each object is a constant for all surfaces in the scene. An ambient light can have a color.

The amount of ambient light that is reflected by an object is independent of the object's position or orientation. Surface properties are used to determine how much ambient light is reflected.

The Common Modes of "Light Transport"

Two Types of SurfaceReflection

- 1. Diffuse Reflection
- 2. Specular Reflection

Modeling Reflection: Diffuse Reflection

Brad Smith, Wikipedia

Diffuse reflection:

- Represents "matte" component of reflected light
- Usually cause by "rough" surfaces (clay, eggshell, etc)

- Represents shiny component of reflected light
- Caused by mirror like reflection off of smooth or polished surfaces (plastics, polished metals, etc)

 $\sum_{i=1}^{n}$ $\theta_{\rm i}$ $\theta_{\rm r}$

Panjasan, Wikipedia

Oi=angle of incidence
Or=angle of reflection

minron-like sphere

- Represents shiny component of reflected light
- Caused by mirror like reflection off of smooth or polished surfaces (plastics, polished metals, etc)

- Represents shiny component of reflected light
- Caused by mirror like reflection off of smooth or polished surfaces (plastics, polished metals, etc)

Romeiro et al, ECCV'O8

- Represents shiny component of reflected light
- Caused by mirror like reflection off of smooth or polished surfaces (plastics, polished metals, etc)

Brad Smith, Wikipedia

- Represents shiny component of reflected light
- Caused by mirror like reflection off of smooth or polished surfaces (plastics, polished metals, etc)

Modeling Reflection: Transmission

Transmission:

- Caused by materials that are not perfectly opaque
- Examples include glass, water and translucent materials such as skin

Guetal, EGSR'07

Modeling Reflection: Sub-surface Scattering

Subsurface scattering:

- Represents the component of reflected light that scatters in the material's interior (after transmission) before exiting again.
- Examples include skin, milk, fog, etc.

Rendering with no subsurface scattering (opaque skin)

Rendering with subsurface scattering (translucent skin)

Rendering with no subsurface scattering (opaque milk)

Rendering with subsurface scattering (full milk)

Rendering with subsurface scattering (skim milk)

The Common Modes of "Light Transport"

The Phong Reflectance Model

Phong model: A simple computationally efficient model that has 3 components:

- Diffuse
- Ambient
- Specular

The Phong Reflectance Model

Brad Smith, Wikipedia

Phong model: A simple computationally efficient model that has 3 components:

- Diffuse
- Ambient
- Specular

Phong Reflection: The Diffuse Component

- A diffuse point looks the same from all viewing positions
- Simplest case: a single, point light source
Phong Reflection: The Diffuse Component

- A diffuse point looks the same from all viewing positions
- Simplest case: a single, point light source

Lambert's Cosine Law

Ideal diffuse reflectors reflect light according to *Lambert's cosine law*, Lambert's law states that the reflected energy from a small surface area in a particular direction is proportional to cosine of the angle between that direction and the surface normal.

The Diffuse Component: Basic Equation

- A diffuse point looks the same from all viewing positions
- Simplest case: a single, point light source

fraction of light reflected	Student	outward unit surface normal
intensity at projection of P	$T_p = r_d^2 \cdot T \cdot Max \cdot (0, 5 \cdot n)$	surface normal direction of P

The Diffuse Component: Basic Equation

• A diffuse point looks the same from all viewing positions

Independent of
$$
\overline{c}
$$

\nIntensity at \overline{p} = r_d . \overline{I} . $\overline{m}a \times (0, \overline{S}, \overrightarrow{n})$ surface normal

\nIntensity at \overline{a} direction of $\overline{S} = \frac{\overline{l} - \overline{p}}{||\overline{l} - \overline{p}||}$

The Diffuse Component: Self-Shadowing

accounts for cases where light source not visible

The Diffuse Component: Multiple Lights

- A diffuse point looks the same from all viewing positions
- When the scene is illuminated by many point sources, we just sum up their contributions to the diffuse component

$$
\sum_{\text{intensity at point } \rho} \Gamma_{\overline{p}} = r_d \sum_{i} \overline{1}_{i} max(0, \overrightarrow{S}_{i} \overrightarrow{n})
$$

The Diffuse Component: Incorporating Color

- A diffuse point looks the same from all viewing positions
- Coloured sources and coloured objects are handled by considering the RGB components of each colour separately

$$
\sum_{\substack{m \text{ intensity of color} \text{ color} \text{ color} \text{ interval } q}} F_{d,q} = r_{d,q} \sum_{i} \frac{1}{\frac{1}{2}i,q} \max(0, \vec{S}_i \vec{n}) q = F_{d,\vec{0}} \text{ for } \vec{S}_i
$$

The Diffuse Component: General Equation

Putting it all together:

$$
\boxed{\mathbf{I}_{\overline{P},q} = r_{d,q} \sum_{i} I_{i,q} \max(0, \overrightarrow{S}_{i} \overrightarrow{n})}
$$

When we look at a shiny surface, such as polished metal, we see a highlight, or bright spot. Where this bright spot appears on the surface is a function of where the surface is seen from. The reflectance is view dependent.

• Idea: For each incident reflection direction, there is one emittent direction \vec{r}

 \vec{s}

• It is an idealization of a mirror:

$$
angle(\vec{n}, \vec{s}) = angle(\vec{n}, \vec{r})
$$

$$
\theta_i \hspace{2.6cm} \theta_r
$$

- Idea: For each incident reflection direction, there is one emittent direction
- It is an idealization of a mirror:

$$
angle(\vec{n}, \vec{s}) = angle(\vec{n}, \vec{r})
$$

 θ_i θ_r Q: How can we express \vec{r} in terms of \vec{n}, \vec{s} ?

 \vec{r}

Q: How can we express \vec{r} in terms of \vec{n}, \vec{s} ?

Ideal specular reflection term:

\n
$$
\overline{1} = \gamma_{s} \overline{1}_{s} \
$$

Ideal specular reflection term:

\n
$$
\overline{1} = \gamma_{s} \overline{1}_{s} \overline{s} \begin{pmatrix} \overrightarrow{r} & \frac{\overrightarrow{r}}{\sqrt{r}} & \frac{\overrightarrow{r}}{\sqrt{r}}
$$

Brad Smith, Wikipedia

Ideal specular reflection term:

\n
$$
\overline{1} = y \cdot \overline{1} \cdot \overline{3} \cdot \overline{1} \cdot \overline{3} \cdot \overline{1} \cdot \overline{3} \cdot \overline{1} \cdot \overline{1}
$$

Phong Reflection: Off-Specular Reflection

Brad Smith, Wikipedia

The Specular Component: Basic Equation

In reality, most specular surfaces reflect light into directions near the perfect direction (e.g. highlights in plastics, metals)

 \rightarrow Introduce cosine power

$$
\frac{T}{1} = V_{S} \times I_{S} max(O, \vec{r}.\vec{b})
$$

\n=1 when $\vec{r}=\vec{b}$ where \vec{r} is the
\nreflection term

The Specular Component: Visualization

The length of vector $(\vec{r} \cdot \vec{s})^{\alpha} \vec{b}$ represents the contribution of the specular term when the camera is along \vec{b}

$$
\frac{T}{1} = \sqrt{5} \pm 5 \text{ max} (0, \vec{r}.\vec{b})
$$
 α α α α α α β α α β α β

Area Light Source, Direct Lighting

"soft" shadows: shadows created because points visible from part of area light source

"hard" shadow: points not visible from light source

Phong Reflection: Ambient Component

- Solution#2: (simpler) Use an "ambient" term that is independent of any light source or surface normal.
- This term is not meaningful in terms of physics but improves appearance over pure diffuse reflection.

- Diffuse reflectance with a single point light source produces strong shadows
- Surface patches with are perfectly black

 \rightarrow Looks unnatural

 $\vec{s} \cdot \vec{n} < 0$

Phong Reflection: The General Equation

Phong Reflection: The General Equation

Brad Smith, Wikipedia

٠

Ambient

٠

Diffuse

Specular

= Phong Reflection

$$
L(\vec{b}, \vec{n}, \vec{s}) = V_{\alpha} L_{\alpha} + V_{d} L_{d} max(0, \vec{n}.\vec{s}) + V_{s} L_{s} max(0, \vec{r}.\vec{b})^{\alpha}
$$

intersity at ambent
propedion of

point P

Computing Diffuse Reflection

The angle between the surface normal and the incoming light ray is called the angle of incidence.

- I_{light} : intensity of the incoming light.
- k_d : represents the diffuse reflectivity of the surface at that wavelength.

What is the range of k_d

$$
I_{\text{diffuse}} = k_d I_{\text{light}} \left(\overline{n} \cdot \overline{l} \right)
$$
\n
$$
I_{\text{diffuse}} = k_d I_{\text{light}} \cos \theta
$$

To this point we have discussed how to compute an illumination model at a point on a surface.

Which points on the surface is the illumination model applied?

Illumination can be costly...

Topic 10:

Shading

- Introduction to Shading
- Flat Shading
- Interpolative Shading
	- Gouraud shading
	- Phong shading
	- Triangle scan-conversion with shading

Shading: Motivation

- Suppose we know how to compute the appearance of a point.
- How do we shade a whole polygon mesh?

Shading: Motivation

- Suppose we know how to compute the appearance of a point.
- How do we shade a whole polygon mesh?

Answer:

Assign intensities to every pixel at the meshe's projection in accordance with Phong reflection model.

$$
L(\vec{b}, \vec{n}, \vec{s}) = \underline{r_{\alpha}} I_{\alpha} + \underline{r_{d}} I_{d} \max(0, \vec{n}.\vec{s}) + \underline{r_{s}} I_{s} \max(0, \vec{r}.\vec{b})^{\alpha}
$$
\nintheisity at
progether of
point \vec{r}

Shading: Problem Definition

Flat Shading: Main Idea

Flat Shading: Key Issues

Flat shading

Draw all triangle points \bar{p} with identical camera colour/intensity

Issues:

- For large triangles:
	- Specular term is poor approximation material because highlight should be sharp (often better to drop this term) - flat shading essentially assumes a
	- distant light source
- Triangle boundaries are usually visible (people very sensitive to intensity steps)

 $(\vec{b}, \vec{n}, \vec{s})$ = $\underbrace{r_a T_\alpha}$ + $r_d T_d$ max $(o, \vec{n}.\vec{s})$ + $r_s T_s$ max $(o, \vec{r}.\vec{b})$

Flat Shading: Key Issues

Issues:

- For large triangles:
	- Specular term is poor approximation material because highlight should be sharp (often better to drop this term) - flat shading essentially assumes a
	- distant light source
- Triangle boundaries are usually visible (people very sensitive to intensity steps)

One solution

- Since flat shading treats a triangle as a point, use small triangles!

 \vec{b}

Interpolated Shading

FLAT SHADING

PHONG SHADING
Interpolative Shading: Basic Approaches

Gouraud shading

- 1. Compute $\overline{L_i}=L(\vec{b}_i,\vec{n_i},\vec{s_i})$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

Phong shading

- 1. Interpolate $b_i, \vec{n}_i, \vec{s}_i$ to get $\vec{b}, \vec{n}, \vec{s}$ at p
- 2. Compute $L(\vec{b}, \vec{n}, \vec{s})$

$$
L(\vec{b}, \vec{n}, \vec{s}) = V_{\alpha} I_{\alpha} + V_{d} I_{d} max(0, \vec{n}, \vec{s}) + V_{s} I_{s} max(0, \vec{r}, \vec{b})^{\alpha}
$$

where \vec{b} and \vec{c} and \vec{c} are the values of \vec

Gouraud Shading: Computation at Vertices

Gouraud shading

- camera 1. Compute $\overline{L_i} = L(\vec{b}_i, \vec{n}_i, \vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

Notes

- Vectors b_i , $\vec{s_i}$ computed directly from \bar{p}_i , \bar{c} and \bar{l}
- Many possible ways to assign a normal to a vertex

$$
L(\vec{b}, \vec{n}, \vec{s}) = V_{\alpha} I_{\alpha} + V_{d} I_{d} \max(0, \vec{n}, \vec{s}) + V_{s} I_{s} \max(0, \vec{r}, \vec{b})^{\alpha}
$$
\ninthensity at
projection of
point \vec{r}

Gouraud Shading: Computation at Vertices

Gouraud shading

- camera 1. Compute $L_i = L(\vec{b}_i, \vec{n}_i, \vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

Notes

- Vectors b_i , $\vec{s_i}$ computed directly from \bar{p}_i , \bar{c} and \bar{l}
- Many possible ways to assign a normal to a vertex
	- 1. \vec{n}_i is the average of the normals of all faces that contain vertex \bar{p}_j

Gouraud Shading: Computation at Vertices

Gouraud shading

- camera 1. Compute $\overline{L_i}=L(\vec{b}_i,\vec{n}_i,\vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

Notes

- Vectors b_i , $\vec{s_i}$ computed directly from \bar{p}_i , \bar{c} and \bar{l}
- Many possible ways to assign a normal to a vertex

 \vec{n}_i is the normal of a point sample on a parametric surface computed when sampling points to create the original mesh

Gouraud Shading: Computation at Pixels

Gouraud shading

- camera 1. Compute $\overline{L_i}=L(\vec{b}_i,\vec{n}_i,\vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

This step is integrated into the standard triangle-filling algorithm

Gouraud Shading: Computation at Pixels

Gouraud shading

- camera 1. Compute $\overline{L}_i = L(\vec{b}_i, \vec{n}_i, \vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

This step is integrated into the standard triangle-filling algorithm

Gourand-shouled triangle

Yzmo, Wiki Pedia

Gouraud shading

- camera 1. Compute $\overline{L}_i = L(\vec{b}_i, \vec{n}_i, \vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

Comparison to flat shading

+ No visible seams between mesh triangles

+ Smooth, visually pleasing intensity variation that "mask" coarse geometry - Specular highlights still a problem for large triangles (why?)

Gouraud shading

- 1. Compute $L_i = L(\vec{b}_i, \vec{n}_i, \vec{s}_i)$ for each vertex
- 2. Interpolate the L_i 's to get the value at p

 $L = \beta L_1 + \gamma L_2 + \epsilon L_3$

Topic 10:

Shading

- Introduction to Shading
- Flat Shading
- Interpolative Shading
	- Gouraud shading
	- Phong shading

Phong Shading: Main Idea

Phong shading:

- 1. Interpolate to get \qquad at
- 2. Computé $L(\vec{b}, \vec{n}, \vec{s})$

Comparison to Gouraud shading

+ Smooth intensity variations as in Gouraud shading

+ Handles specular highlights correctly even for large triangles (Why?)

$$
L(\vec{b}, \vec{n}, \vec{s}) = \underbrace{r_{\alpha} L_{\alpha}}_{\text{unknown set of an independent}} + r_{\underline{d} L_{\underline{d}} \text{ max}(0, \vec{n}.\vec{s})} + r_{\underline{s} L_{\underline{s}} \text{ max}(0, \vec{v}.\vec{b})}^{\text{max}}_{\text{Specular}} = \underbrace{r_{\underline{s} L_{\underline{d}} \text{ max}(0, \vec{v}.\vec{b})}}_{\text{Specular}} + \underbrace{r_{\underline{s} L_{\underline{s} \text{ max}(0, \vec{v}.\vec{b})}}^{\text{max}}}_{\text{Specular}}.
$$

Phong Shading: Comparisons

Phong shading:

- 1. Interpolate to get \qquad at
- 2. Computé $L(\vec{b}, \vec{n}, \vec{s})$

Comparison to Gouraud shading

+ Smooth intensity variations as in Gouraud shading

+ Handles specular highlights correctly even for large triangles (Why?)

it is possible to have a significant specular component at \overline{p} even when all vertices have a negligible specular component

Phong Shading: Comparisons

1. Interpolate to get \qquad at

2. Computé $L(\vec{b}, \vec{n}, \vec{s})$

Gouraud shading

Phong Shading: Comparisons

Phong shading:

- 1. Interpolate to get \qquad at
- 2. Computé $L(\vec{b}, \vec{n}, \vec{s})$

Comparison to Gouraud shading

+ Smooth intensity variations as in Gouraud shading

+ Handles specular highlights correctly even for large triangles (Why?)

- Computationally less efficient (but okay in today's hardware!) (Must interpolate 3 vectors & evaluate Phong reflection model at each triangle pixel)

