Topic 6:

3D Transformations

- Homogeneous 3D transformations
- Scene Hierarchies
- Change of basis and rotations in 3D

Showtime:

Logitics

- Assignment 1 Due Tomorrow
- Assignment 2 available today/tomorrow
- For assignment questions use the bulletin board or email:
 - csc418tas@cs.toronto.edu
- "When will your slides be online ?"
 - Today 🙂

Representing 2D transforms as a 3x3 matrix

Translate a point $[x y]^T$ by $[t_x t_y]^T$:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Rotate a point $[x y]^T$ by an angle t:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Scale a point $[x y]^T$ by a factor $[s_x s_y]^T$

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{\mathbf{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{1} \end{bmatrix}$$

Representing 3D transforms as a 4x4 matrix

Translate a point $[x y z]^T$ by $[t_x t_y t_z]^T$:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Rotate a point $[x y z]^T$ by an angle t around z axis:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t & 0 & 0 \\ \sin t & \cos t & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Scale a point $[x y z]^T$ by a factor $[s_x s_y s_z]^T$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Elementary Rotations in 3D

Rotation About Arbitrary Vector?

C~C~ 29 82 0.4

Rotation About Arbitrary Vector?

Rotation About Arbitrary Vector: Construction

Question: How do we define A when it is a rotation of \$\$ about an arbitrary vector \$\$?

Basic Idea: Since we know how to do rotations about Z, we will do the following: * Align V with the Z axis "temporarily" (Using axis-aligned rotations) * Rotate about V using Az * Undo the temporary alignment

Scene Hierarchies

Change of reference frame/basis matrix

$$p = ap_{x}' + bp_{y}' + cp_{z}' + o$$

$$p = \left(\begin{array}{c} a \ b \ c \ o \\ 0 \ 0 \ 0 \ 1 \end{array} \right) p'$$
$$p' = \left(\begin{array}{c} a \ b \ c \ o \\ 0 \ 0 \ 0 \ 1 \end{array} \right)^{1} p$$

After translation
to align origins scalars

$$\vec{p} = (x, y, z)$$

 $\vec{p} = (x, y, z)$
 \vec{r}
 \vec{r}

Viewing Pipeline

Topic 7:

3D Viewing

- Camera Model
- Orthographic projection
- The world-to-camera transformation
- Perspective projection
- The transformation chain for 3D viewing

Real pinhole camera

Camera with a lens

Camera with a lens

are using. If you the the depth of field will be to infinity. ↓ For amera has a hyperference of the to the test of test of the test of the test of test of the test of test of the test of test

The Pinhole Camera: Basic Geometry in 2D

Viewing Transform

Viewing Transform

Viewing Transform

Viewing Transform

After translation
to align origins scalars

$$\vec{p} = (x, y, z)$$

 $\vec{p} = (x, y, z)$
 \vec{r}
 \vec{r}

Change-of-basis Matrix

$$M_{camera} = \begin{pmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Change-of-basis Matrix

$$M_{camera} = \begin{pmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -eye_x \\ 0 & 1 & 0 & -eye_y \\ 0 & 0 & 1 & -eye_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Viewing Pipeline

What is the difference between these images?

Frankfurt airport tunnel (wiki pedia con) 1 object-to-camera distance affects an objective projection In real photos - parallel lines -> do converge in the distance!

- Parallel: usage in mechanical and architectural drawings
- Perspective projection: more natural and realistic

- How to get 3D objects perspectively correct on 2D screen?
- Note: usually your API takes care of most of this, but it's good to know what's going on behind those function calls (esp. when debugging your code)

Orthographic projection

Orthographic projection

- Parallel: usage in mechanical and architectural drawings
- Perspective projection: more natural and realistic

- How to get 3D objects perspectively correct on 2D screen?
- Note: usually your API takes care of most of this, but it's good to know what's going on behind those function calls (esp. when debugging your code)

Perspective Projection

Perspective projection

The view frustum (aka view volume) specifies everything that the camera can see. It's defined by

- the left plane *l*
- the right plane r
- the top plane t
- the bottom plane b
- the near plane n
- the far plane f

For now, we assume *wireframe models* that are *completely within* the view frustum

Perspective projection

Simple Perspective

Simple Perspective

 $w = \frac{z}{d}$

Using Homogenous Coordinates

With homogeneous coordinates, the vector

(x, y, z, 1) represents the point (x, y, z).

Now we extend this in a way that the homogeneous vector

(x, y, z, w) represents the point (x/w, y/w, z/w).

And matrix transformation becomes:

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ e & f & g & h \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

 $w = \frac{z}{d}$

Homogenous Coordinate after Orthographic Projection

Homogenous Coordinate after **Perspective Projection**

 M_{ortho} $1 \quad 0$ $\begin{array}{cccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$ ersp $\begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 0 & 2 & 1
 \end{bmatrix}$ $\frac{1}{2}$

Viewing volumes

Transforming the View Frustim

We have to transform the view frustum into the orthographic view volume. The transformation needs to

- Map lines through the origin to lines parallel to the z axis
- Map points on the viewing plane to themselves.
- Map points on the far plane to (other) points on the far plane.
- Preserve the near-to-far order of points on a line.

Cannonical view volume

Map 3D to a cube centered at the origin of side length 2!

The orthographic view volume

... how do we get the data from the axis-aligned box $[l,r] \times [b,t] \times [n,f]$ to a $2 \times 2 \times 2$ box around the origin?

The orthographic view volume

First we need to move the center to the origin:

$$\begin{pmatrix} 1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{b+t}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The orthographic view volume

Then we have to scale everything to [-1, 1]:

$$\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & 0\\ 0 & \frac{2}{t-b} & 0 & 0\\ 0 & 0 & \frac{2}{n-f} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Note: we divide by the length, e.g. $\frac{1}{\frac{r-l}{2}}$ for the x-coordinate value

Since these are just matrix multiplications (associative!), we can combine them into one matrix:

$$M_{orth} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & 0\\ 0 & \frac{2}{t-b} & 0 & 0\\ 0 & 0 & \frac{2}{n-f} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -\frac{l+r}{2}\\ 0 & 1 & 0 & -\frac{b+t}{2}\\ 0 & 0 & 1 & -\frac{n+f}{2}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Homogeonous Coords and Perspective

The following matrix will do the trick:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{n+f}{n} & -f \\ 0 & 0 & \frac{1}{n} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Remember that

- we are looking in negative Z-direction
- n, f denote the near and far plane of the view frustum
- n serves as projection plane

Let's verify that ...

$$\begin{array}{cccc} M_{persp} \\ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{n+f}{n} & -f \\ 0 & 0 & \frac{1}{n} & 0 \end{array} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ \frac{n+f}{n} - f \\ \frac{z}{n} \end{pmatrix} \xrightarrow{\text{homogenize}} \begin{pmatrix} \frac{nx}{z} \\ \frac{ny}{z} \\ n+f-\frac{fn}{z} \\ 1 \end{pmatrix}$$

Indeed, that gives the correct values for x_s and y_s .

But what about z? Remember our requirements for z:

- stays the same for all points on the near and fare planes
- does not change the order along the Z-axis for all other points

Verify

We have $z_s = n + f - rac{fn}{z}$ and need to prove that \ldots

points on the near plane are mapped to themselves,
 i.e. if z = n, then z_s = n:

$$z_s = n + f - \frac{fn}{n} = n + f - f = n$$

and obviously $x_s = \frac{nx}{n} = x$ and $y_s = \frac{ny}{n} = y$.

points on the far plane stay on the far plane,
 i.e. if z = f, then z_s = f:

$$z_s = n + f - \frac{fn}{f} = n + f - n = f$$

and ...

Verify

We have $z_s = n + f - rac{fn}{z}$ and need to prove that ...

 z-values for points within the view frustum stay within the view frustum,

i.e. if z > n then $z_s > n$:

$$z_s = n + f - \frac{fn}{z} > n + f - \frac{fn}{n} = n$$

and if z < f then $z_s < f$:

$$z_s = n + f - \frac{fn}{z} < n + f - \frac{fn}{f} = f$$

and ...

Verify

We have $z_s = n + f - \frac{fn}{z}$ and need to prove that ...

• the order along the Z-axis is preserved, i.e. if $0 > n \ge z_1 > z_2 \ge f$ then $z_{1s} > z_{2s}$:

With
$$z_{1s} = n + f - \frac{fn}{z_1}$$
 and $z_{2s} = n + f - \frac{fn}{z_2}$ we get:
 $z_{1s} - z_{2s} = \frac{fn}{z_2} - \frac{fn}{z_1} = \frac{(z_1 - z_2)fn}{z_1 z_2}.$

Because of $f, z_1, z_2, n < 0$ we have $\frac{fn}{z_1z_2} > 0$, and because of $z_1 > z_2$, we have $z_1 - z_2 > 0$, so

$$z_{1s}-z_{2s}>0$$
 or $z_{1s}>z_{2s}$

Viewing Pipeline

CANONICAL VIEW VOLUME

SCREEN SPACE

Now all that's left is a parallel projection along the Z-axis (every easy) and ...

SCREEN SPACE

$$M_{2D} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Viewing Pipeline

... a windowing transformation in order to display the square $[-1, 1]^2$ onto an $n_x \times n_y$ image.

Again, these are just some (simple) matrix multiplications

