Interpolating Curves

- Intro to curve interpolation \& approximation
- Polynomial interpolation
- Bézier curves

Showtime:

Logistics

- Assignment 2 is available
- For assignment questions use the bulletin board or email:
- csc418tas@cs.toronto.edu
- I'll be away next week, Prof. Singh will be giving the lecture on Wednesday
- Reminder: Midterm held during tutorial time on Monday, Feb. 12
- Covers material from all lectures up to and including this one

Interpolating Curves

- Intro to curve interpolation \& approximation
- Polynomial interpolation
- Bézier curves

Applications

Applications

- Specify smooth camera path in scene along spline curve
- Curved smooth bodies and shells (planes, boats, etc)
- Animation curves

Applications

History

- Used to create smoothly varying curves
- Variations in curve achieved by the use of weights (like control points)

Used by engineers in ship building and airplane design before computers were around

Interactive Design of Curves

Goal: Expand the capabilities of shapes beyond lines and conics, simple analytic functions and to allow design constraints.

Design Issues:

- Continuity (smoothness)
- Control (local vs. global)
- Interpolation vs. approximation of constraints
- Other geometric properties (planarity, tangent/curvature control)
- Efficient analytic representation
C^{n} continuity

Definition: a function is called C^{n} if $\mathrm{it}^{\prime} \mathrm{s} \mathrm{n}^{\text {th }}$ order derivative is continuous everywhere
curve is NOT C ${ }^{\circ}$

$\frac{d x}{d t}$
$\frac{d^{2} x}{d t^{2}}$
NOT DEFINED
AT BREAKPOINT

Curve is C°

NOT DEFINED AT BREAKPOINT
carve is C^{1}

\hat{i}
$\cdots \cdots$

Local vs. Global Control

- Local control changes curve only locally while maintaining some constraints
- Modifying point on curve affects local part of curve or entire curve

Interpolation vs Approximation

Interpolating splines: pass through all the data points (control points). Example: Hermite splines

Interpolation vs. Approximation

Curve approximates but does not go through all of the control points.

Comes close to them.

Geometric continuity at a joint of two curves

Geometric Continuity
G_{0} : curves are joined
G_{1} : first derivatives are proportional at the join point The curve tangents thus have the same direction, but not necessarily the same magnitude. i.e., $C_{1}{ }^{\prime}(1)=(a, b, c)$ and $C_{2}{ }^{\prime}(0)=\left(k^{*} a, k^{*} b, k^{*} c\right)$.
G_{2} : constant curvature at the join

Example: Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the control points

Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the

C^{n} continuity

Definition: a function is called C^{n} if $\mathrm{it}^{\prime} \mathrm{s} \mathrm{n}^{\text {th }}$ order derivative is continuous everywhere
curve is NOT C ${ }^{\circ}$

$\frac{d x}{d t}$
$\frac{d^{2} x}{d t^{2}}$
NOT DEFINED
AT BREAKPOINT

Curve is C°

NOT DEFINED AT BREAKPOINT
carve is C^{1}

\hat{i}
$\cdots \cdots$

General Problem Statement

- Given N control points, $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=0 . . . \mathrm{n}-1, \mathrm{t} \in[0,1]$ (by convention)
- Define a curve $\mathrm{c}(\mathrm{t})$ that interpolates / approximates them
- Compute its derivatives (and tangents, normals etc)

Polynomial Interpolation

- Given N control points, $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=0 \ldots \mathrm{n}-1, \mathrm{t} \in[0,1]$ (by convention)
- Define ($\mathrm{N}-1$)-order polynomial $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$ such that

$$
x(i /(N-1))=x_{i}, y\left(i /(N-1)=y_{i} \text { for } i=0, \ldots, N-1\right.
$$

- Compute its derivatives (and tangents, normals etc)

Basic Equations

$$
\left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\}
$$

-given $\overline{p_{1}}, \overline{p_{2}}, \overline{p_{3}}, \overline{p_{4}}$
compute $a_{i,}, b_{i}$
Equations for one control point: Equations in matrix form:

$$
\begin{aligned}
& x_{1}=a_{0}+a_{1} \cdot \frac{1}{3}+a_{2}\left(\frac{1}{3}\right)^{2}+a_{3}\left(\frac{1}{3}\right)^{3} \\
& y_{1}=b_{0}+b_{1} \cdot \frac{1}{3}+b_{2}\left(\frac{1}{3}\right)^{2}+b_{3}\left(\frac{1}{3}\right)^{3}
\end{aligned} \quad\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2}
\end{array}\left(\frac{1}{3}\right)^{3}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Computing Coeffs

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \quad \begin{array}{l}
\text { given } \overline{p_{1}}, \bar{p}_{2}, \overline{p_{3}}, \overline{p_{4}} \\
\text { compute } a_{i}, b_{i}
\end{array} \\
& \underbrace{\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]}_{\text {known }}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 / 3 & (1 / 3)^{2} & (1 / 3)^{3} \\
1 & 2 / 3 & (2 / 3)^{2} & (2 / 3)^{3} \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
\underbrace{}_{\text {known }}
\end{array} \begin{array}{cc}
x & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3} \\
a_{4} & b_{4}
\end{array}\right] \quad \begin{array}{c}
\text { unknown } \\
\begin{array}{c}
\text { solve system } \\
\text { in terms of } \\
\text { unknown } \\
\text { matrix }
\end{array} \\
x=A^{-1} c
\end{array}
\end{aligned}
$$

What if < 4 Control Points?

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \\
& \text {-given } \overline{p_{1}}, \overline{p_{2}}, \overline{\bar{P}_{3}}, \overline{p_{4}} \\
& \text { compute } a_{i}, b_{i}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2} \\
\left(\frac{1}{3}\right)^{3}
\end{array}\right)^{3}\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]}
\end{aligned}
$$

What if >4 Control Points?

$$
\left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\}
$$

-given $\overline{p_{1}}, \overline{p_{2}}, \overline{p_{3}}, \overline{P_{4}}$ compute a_{i}, b_{i}

Degree-N Poly Interpolation

- To interpolate N points perfectly with a single polynomial, we need a polynomial of degree N-1

Major drawback: it is a global interpolation scheme

i.e. moving one control point changes the interpolation of all points, often in unexpected, unintuitive and undesirable ways

Degree-N Poly Interpolation

- To interpolate N points perfectly with a single polynomial, we need a polynomial of degree N-1

Major drawback: it is a global interpolation scheme

i.e. moving one control point changes the interpolation of all points, often in unexpected, unintuitive and undesirable ways

Runge's Phenomenon

The higher-order the polynomial, the more oscillation you get at the boundaries when using equidistant control points

Instead we use "Splines"

Curve is defined by piecewise polynomials

Example: Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the control points

Instead we use "Splines"

Curve is defined by piecewise polynomials

Hermite Splines

- Cubic polynomials specified by end point positons and end point tangents (4 pieces of information)

Evaluating Derivatives

$$
\begin{aligned}
& x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& \frac{d x}{d t}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2}
\end{aligned}
$$

$$
\left[\frac{d x}{d t}(t) \quad \frac{d y}{d t}(t)\right]=\left[\begin{array}{lll}
1 & 2 t & 3 t^{2}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Designing Polynomial Curves from constraints

$p(t)=T A$, where T is powers of t. for a cubic $T=\left[t^{3} t^{2} t^{1} 1\right]$.
Written with geometric constraints $p(t)=T M G$, where M is the Basis matrix of a design curve and G the specific design constraints.

An example of constraints for a cubic Hermite for eg. are end points and end tangents. i.e. P_{1}, R_{1} at $t=0$ and P_{4}, R_{4} at $t=1$. Plugging these constraints into $p(t)=T A$ we get.

B
$p(0)=P_{1}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right] A_{h}$
$p(1)=P_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right] A_{h}$
$p^{\prime}(0)=R_{1}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right] A_{h} \quad \Rightarrow \quad G=B A, A=M G=>M=B^{-1}$
$\mathrm{p}^{\prime}(1)=\mathrm{R}_{4}=\left[\begin{array}{llll}3 & 2 & 1 & 0\end{array}\right] \mathrm{A}_{\mathrm{h}}$

Bézier Curves

Properties:

- Polynomial curves defined via endpoints and derivative constraints
- Derivative constraints defined implicitly through extra control points (that are not interpolated)
- They are approximating curves, not interpolating curves

Bézier Curves: Main Idea
Polynomial and its derivatives expressed as a cascade of linear interpolations

algorithm:
given $\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}$ and t

1. linearly interpolate \bar{P}_{0}, \bar{P}_{1} to get $\overline{\alpha_{0}}(t)$
2. lineary interpolate \bar{p}_{1}, \bar{p}_{2} to get $\bar{\alpha}_{1}(t)$
3. lInearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{1}(t)$ to get $\bar{c}(t)$

Bézier Curves: Control Polygon
A Bézier curve is completely determined by its control polygon
We manipulate the curve by manipulating its polygon

Bézier Curve as a Polynomial
Computing the polynomial

$$
\begin{aligned}
c(t) & =\left[P_{0}+t\left(\bar{P}_{1}-\bar{P}_{0}\right)\right]+t\left[\bar{P}_{1}+t\left(\bar{P}_{2}-\bar{P}_{1}\right)-\bar{P}_{0}-t\left(\bar{P}_{1}-\bar{P}_{0}\right)\right] \\
& =\bar{P}_{0}\left(1-t-t+t^{2}\right)+\bar{P}_{1}\left(t+t-t^{2}-t^{2}\right)+\bar{P}_{2} t^{2} \\
& =\bar{P}_{0}(1-t)^{2}+2 \bar{P}_{1} t(1-t)+\bar{P}_{2} t^{2}
\end{aligned}
$$

algorithm:
given $\bar{p}_{0}, \bar{p}_{1}, \bar{p}_{2}$ and t 1. linearly interpolate $\bar{p}_{1}, \overline{p_{1}}$ to get $\overline{\alpha_{0}}(t)$ 2. Ineary interpolate \bar{p}_{1}, \bar{P}_{2} to get $\bar{\alpha},(f)$
3. linearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{1}(t)$ to get $\bar{c}(t)$

Derivatives of the Bézier Curve
Computing the polynomial's derivatives:

$$
\begin{aligned}
\frac{d}{d t} c(t)=-2(1-t) P_{0}+2 P_{1}(1-2 t)+p_{2} 2 t & =2\left(p_{1}-p_{0}\right) \text { at } t=0 \\
& \approx 2\left(p_{2}-p_{1}\right) \text { at } t=1
\end{aligned}
$$

algorithm:
given $\bar{p}_{0}, \bar{p}_{1}, \bar{p}_{2}$ and t

1. linearly interpolate \bar{p}_{0}, \bar{p}_{1} to get $\bar{\alpha}_{0}(t)$
2. Ineary interpolate \bar{p}_{1}, \bar{p}_{2} to get $\bar{\alpha}_{1}(f)$
3. linearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{,}(t)$ to get $\bar{c}(t)$

Endpoints and Tangent Constraints
Computing the polynomial's derivatives:

$$
\begin{aligned}
& \frac{d}{d t} C(t)=-2(1-t) P_{0}+2 P_{1}(1-2 t)+P_{2} 2 t=2\left(P_{1}-P_{0}\right) \text { at } t=0 \\
&=2\left(P_{2}-P_{1}\right) \text { at } t=1
\end{aligned}
$$

General Behaviour

- $1^{\text {st }}$ and $3^{\text {rd }}$ control points define the endpoints.
- $2^{\text {nd }}$ control point defines the tangent vector at the endpoints.

Generalization to N+1 points
Expression in compact form:

$$
\bar{c}(t)=\sum_{\substack{i=0 \\ \text { control pt }}}^{N} \bar{p}_{i} B_{i}^{N}(t)
$$

Curve defined by N linear interpolation cascades (De Casteljau's algorithm):

called the Bernstein polynomials of degree N

$$
\begin{aligned}
B_{i}^{N}(t) & =\binom{N}{i}(1-t)^{N-i} t^{i}! \\
& =\frac{N!}{(N-i)!+1}(1-t)^{N-i} t^{i}!
\end{aligned}
$$

Example for 4 control points and 3 cascades

Bézier and Control Points
Expression in compact form:

$$
\bar{c}(t)=\sum_{\substack{i=0 \\ \text { control pt }}}^{N} \bar{P}_{i} B_{i}^{N}(t)
$$

with $\sum_{i=0}^{N} B_{i}^{N}(t)=1$ for all t

Bézier Curves: Useful Properties

Expression in compact form:

$$
\bar{C}(t)=\sum_{i=0} \bar{P}_{i} B_{i}^{N}(t)
$$

1.Affine Invariance

- Transforming a Bézier curve by an affine
 transform T is equivalent to transforming its control points by T

2.Diminishing Variation

- No line will intersect the curve at more points than the control polygon - curve cannot exhibit "excessive fluctuations"

3.Linear Precision

- If control poly approximates a line, so will the curve

Bézier Curves: Useful Properties
Expression in compact form:
Called the Bernstein

$$
\bar{c}(t)=\sum_{i=0}^{N} \bar{P}_{i} B_{i}^{N}(t)
$$

$$
\begin{aligned}
B_{i}^{N}(t) & =\binom{N}{i}(1-t)^{N-i} t^{i} \\
& =\frac{N!}{(N-i)!i!}(1-t)^{N-i} t^{i}
\end{aligned}
$$

4. Tangents at endpoints are along the 1st and last edges of control polygon:

$$
\begin{aligned}
\frac{d}{d t} \bar{c}(t) & =\sum_{i=1}^{N} \bar{P}_{i} \frac{d}{d t} B_{i}^{N}(t) \\
\stackrel{N}{\text { Nome }} \begin{array}{l}
\text { some } \\
\text { work }
\end{array} & N \sum_{i=0}^{N-1}\left(\bar{p}_{i+1}-\bar{p}_{i}\right) B_{i}^{N-1}(t) \\
& N\left(\bar{p}_{1}^{\prime \prime}-\bar{p}_{0}\right) \quad N\left(\bar{p}_{N}-\bar{p}_{N-1}\right) \\
& \text { for } t=0 \quad \text { for } t=1
\end{aligned}
$$

$$
\bar{p}_{p_{0}}^{\substack{\text { control } \\ \text { collgoon }}}
$$

Bézier Curves: Pros and Cons

Advantages:

- Intuitive control for $\mathrm{N} \leq 3$
- Derivatives easy to compute
- Nice properties (affine invariance, diminishing variation)

Disadvantages:

- Scheme is still global (curve is function of all control points)

Reminders

Bezier Basis Matrix

A cubic Bezier can be defined with four points where:
P_{1}, R_{1} at $t=0$ and P_{4}, R_{4} at $t=1$ for a Hermite.
$R_{1}=3\left(P_{2}-P_{1}\right)$ and $R_{4}=3\left(P_{4}-P_{3}\right)$.

We can thus compute the Bezier Basis Matrix by finding the matrix that transforms $\left[P_{1} P_{2} P_{3} P_{4}\right]^{\top}$ into $\left[P_{1} P_{4} R_{1} R_{4}\right]^{\top}$ i.e.

$$
\begin{aligned}
\mathrm{B}_{-} \mathrm{H}= & {\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] } \\
& {\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] } \\
& {\left[\begin{array}{lllll}
-3 & 3 & 0 & 0
\end{array}\right] } \\
& {\left[\begin{array}{llll}
0 & 0 & -3 & 3
\end{array}\right] }
\end{aligned}
$$

$\mathrm{M}_{\text {bezier }}=\mathrm{M}_{\text {hermite }}$ * $\mathrm{B}_{-} \mathrm{H}$

Bezier Basis Functions

[$\left.\begin{array}{llll}-1 & 3 & -3 & 1\end{array}\right]$
$\left[\begin{array}{llll}3 & -6 & 3 & 0\end{array}\right]$
$\left[\begin{array}{llll}-3 & 3 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$
The columns of the Basis Matrix form Basis Functions such that: $p(t)=f_{1}(t) P_{1}+f_{2}(t) P_{2}+f_{3}(t) P_{3}+f_{4}(t) P_{4}$.

From the matrix:
$\mathrm{f}_{\mathrm{i}}(\mathrm{t})=\binom{\mathrm{n}}{\mathrm{i}} *(1-\mathrm{t})^{(\mathrm{n-i})} * \mathrm{t}^{\mathrm{i}}$
These are also called Bernstein polynomials.

Basis Functions

Basis functions can be thought of as interpolating functions. Note: actual interpolation of any point only happens if its Basis function is 1 and all others are zero at some t.

Often Basis functions for design curves sum to 1 for all t. This gives the curve some nice properties like affine invariance and the convex hull property when the function are additionally non-negative.

