Today's Topics

3. Transformations in 2D
4. Coordinate-free geometry
5. 3D Objects (curves \& surfaces)
6. Transformations in 3D

Transformations

Transformation/Deformation in Graphics:
A function f , mapping points to points.
simple transformations are usually invertible.

Applications:

- Placing objects in a scene.
- Composing an object from parts
- Animating objects.

Processing Tree Demo!
https://processing.org/examples/tree.html

Rotate a point $[x y]^{\top}$ by an angle t :

Scale a point $[x y]^{\top}$ by a factor $\left[s_{x} s_{y}\right]^{\top}$
$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$

Translate?

Topic 3:

2D Transformations

- Simple Transformations
- Homogeneous coordinates
- Homogeneous 2D transformations
- Affine transformations \& restrictions
$\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{t}_{\mathrm{x}}$
$y^{\prime}=y+t_{y}$

Rotate a point $[\mathrm{xy}]^{\top}$ by an angle t :
$x^{\prime}=x \cos t-y \sin t$
$\mathrm{y}^{\prime}=\mathrm{x} \sin \mathrm{t}+\mathrm{y} \cos \mathrm{t}$

Scale a point $[\mathrm{xy}]^{\top}$ by a factor $\left[s_{x} s_{y}\right]^{\top}$
$x^{\prime}=x s_{x}$
$y^{\prime}=y s_{y}$

Line Equations in Homogeneous Coordinates

A line given by the equation

$$
a x+b y+c=0
$$

can be represented in Homogeneous coordinates as:
$\mathrm{I}=[\mathrm{abc}]$, making the line equation
I. $p=\left[\begin{array}{ll}a & b c\end{array}\right]\left[\begin{array}{ll}x & y\end{array}\right]^{\top}=0$

Aside: cross product as a matrix
$\left[\begin{array}{lll}0 & -c & b\end{array}\right]\left[\begin{array}{ll}x y & 1\end{array}\right]^{\top}$
$\left[\begin{array}{lll}c & 0 & -a\end{array}\right]$
$\left[\begin{array}{lll}{\left[\begin{array}{lll}-b & a & 0\end{array}\right]}\end{array}\right.$

For a point that is the intersection of two lines $\mathrm{I}_{0}, \mathrm{I}_{1}$
we have p. $\mathrm{I}_{0}=$ p. $\mathrm{l}_{1}=0$
In other words we can write p using a cross product as: $\mathrm{p}=\mathrm{I}_{0} \times \mathrm{I}_{1}$

What happens when the lines are parallel?

The Line Passing Through 2 Points

For a line I that passes through two points p_{0}, p_{1}
we have I. $p_{0}=1 . p_{1}=0$.
In other words we can write I using a cross product
as:
$\mathrm{I}=\mathrm{p}_{0} \mathrm{Xp}$

Translate a point $[\mathrm{xy}]^{\top}$ by $\left[\mathrm{t}_{\mathrm{x}} \mathrm{t}_{\mathrm{y}}\right]^{\top}$

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

Rotate a point $[x y]^{\top}$ by an angle t :
$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{ccc}\cos t & -\operatorname{sint} & 0 \\ \operatorname{sint} & \cos t & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$
Scale a point $[\mathrm{xy}]^{\top}$ by a factor $\left[\mathrm{s}_{\mathrm{x}} \mathrm{s}_{\mathrm{y}}\right]^{\top}$
$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left(\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$

Properties of 2D transforms

...these 3×3 transforms have a variety of properties. most generally they map lines to lines. Such invertible Linear transforms are also called Homographies.
...a more restricted set of transformations also preserve parallelism in lines. These are called Affine transforms.
...transforms that further preserve the angle between lines are called Conformal.
...transforms that additionally preserve the lengths of line segments are called Rigid.

Where do translate, rotate and scale fit into these?

Homography: mapping four points

How does the mapping of 4 points uniquely define the 3×3 Homography matrix?

Affine: preserving parallel lines

What restriction does the Affine property impose on H ?
If two lines are parallel their intersection point at infinity, is of the form $\left[\begin{array}{ll}x & y\end{array}\right]^{\top}$.

If these lines map to lines that are still parallel, then $\left[\begin{array}{lll}x & y & 0\end{array}{ }^{\top}\right.$ transformed must continue to map to a point at infinity or $\left[x^{\prime} y^{\prime} 0\right]^{\top}$

$$
\text { i.e. } \quad\left[x^{\prime} y^{\prime} 0\right]^{\top}=\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
? & ? & ?
\end{array}\right]\left[\begin{array}{lll}
x & y & 0
\end{array}\right]^{\top}
$$

Properties of 2D transforms

Homography, Linear (preserve lines)
Affine (preserve parallelism) shear, scale
Conformal (preserve angles) uniform scale
Rigid (preserve lengths) rotate, translate

Homography: preserving lines

Show that if points p lie on some line I,
then their transformed points p^{\prime} also lie on some line l^{\prime}.

Proof:

We are given that $\mathrm{l} . \mathrm{p}=0$ and $\mathrm{p}^{\prime}=\mathrm{Hp}$. Since H is invertible, $\mathrm{p}=\mathrm{H}^{-1} \mathrm{p}^{\prime}$.
Thus $\mathrm{I} .\left(\mathrm{H}^{-1} \mathrm{p}^{\prime}\right)=0=>\left(I \mathrm{H}^{-1}\right) \cdot \mathrm{p}^{\prime}=0$, or p^{\prime} lies on a line $\mathrm{I}^{\prime}=\mathrm{IH}^{-1}$.
QED

Affine: preserving parallel lines

What restriction does the Affine property impose on H ?
If two lines are parallel their intersection point at infinity, is of the form $[\mathrm{x} y 0]^{\top}$.

If these lines map to lines that are still parallel, then $\left[\begin{array}{lll}x & y & 0\end{array}\right]^{\top}$ transformed must continue to map to a point at infinity or $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 0\end{array}\right]^{\top}$
i.e.

$$
\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 0
\end{array}\right]^{\top}=\left(\begin{array}{lll}
\left(\begin{array}{ll}
A \\
0 &
\end{array}\right. & 0 & 1
\end{array}\right)\left[\begin{array}{ll}
t
\end{array}\right)\left[\begin{array}{lll}
x & y & 0
\end{array}\right]^{\top}
$$

In Cartesian co-ordinates Affine transforms can be written as

$$
p^{\prime}=A p+t
$$

Affine properties: composition

Affine transforms are closed under composition. i.e.
Applying transform $\left(\mathrm{A}_{1}, \mathrm{t}_{1}\right)\left(\mathrm{A}_{2}, \mathrm{t}_{2}\right)$ in sequence results in an overall Affine transform.

$$
p^{\prime}=A_{2}\left(A_{1} p+t_{1}\right)+t_{2} \Rightarrow\left(A_{2} A_{1}\right) p+\left(A_{2} t_{1}+t_{2}\right)
$$

Affine transform: geometric interpretation

A change of basis vectors and translation of the origin

point p in the local coordinates of a reference frame defined by <a1,a2,t> is

$$
\left(\begin{array}{ll}
\left(\begin{array}{ll}
a 1 & a 2
\end{array}\right)(t) \\
0 & 0
\end{array} 1\right)^{-1}(\mathrm{p})
$$

Composing Transformations

Any sequence of linear transforms can be collapsed into a single
3×3 matrix by concatenating the transforms in the sequence.

In general transforms DO NOT commute, however certain combinations of transformations are commutative...

> The inverse of an Affine transform is Affine. Prove it!

Affine transform: change of reference frame

How can we transform a point p from one reference frame <a1,b1,o1>, to another frame <a2,b2,o2>?

The typical rotation matrix, rotates points about the origin. To rotate about specific point q, use the ability to compose transforms...

$$
T_{q} R T_{-q}
$$

Topic 4:

Coordinate-Free Geometry (CFG)

- A brief introduction \& basic ideas

Topic 5:

3D Objects

- General curves \& surfaces in 3D
- Normal vectors, surface curves \& tangent planes
- Implicit surface representations
- Example surfaces: surfaces of revolution, bilinear patches, quadrics

$p(s, t)=q+a s+t b$

Topic 5:

3D Objects

- General curves \& surfaces in 3D
- Normal vectors, surface curves \& tangent planes
- Implicit surface representations
- Example surfaces:
surfaces of revolution, bilinear patches, quadrics

Normal vector of a plane

$p(s, t)=q+a s+t b$

Normal vector of a parametric surface

Tangent / Normal vectors of 2D curves

Explicit: $y=f(x)$. Tangent is $d y / d x$. Parametric: $x=f_{x}(t)$ $y=f_{y}(t)$	Tangent is $(d x / d t, d y / d t)$
Implicit: $f(x, y)=0$	Normal is gradient(f).
	direction of max. change

Given a tangent or normal vector in 2D how do we compute the other?

What about in 3D?

Normal vector of a plane

$n=a X b$

Normal vector of a parametric surface

$n=f^{\prime}\left(u_{0}, v\right) X f^{\prime}\left(u, v_{0}\right)$

Topic 5:

3D Objects

- General curves \& surfaces in 3D
- Normal vectors, surface curves \& tangent planes
- Implicit surface representations
- Example surfaces:
surfaces of revolution, bilinear patches, quadrics

Implicit function: level sets

$f(p)=(p-q) \cdot n=0$

Topic 5:

3D Objects

\author{

- General curves \& surfaces in 3D
 - Normal vectors, surface curves \& tangent planes
 - Implicit surface representations
 - Example surfaces: surfaces of revolution, bilinear patches, quadrics
}

3D parametric surfaces
3D parametric surfaces: Coons interpolation

- Extrude
- Revolve
- Loft
- Square

