
Topic 3:

2D Transformations

• Simple Transformations 

• Homogeneous coordinates

• Homogeneous 2D transformations

• Affine transformations & restrictions



Transformations

Transformation/Deformation in Graphics:

A function f, mapping points to points.
simple transformations are usually invertible.

[x y] T     [x’ y’] T 

Applications:
• Placing objects in a scene.
• Composing an object from parts.
• Animating objects.

Processing Tree Demo!
https://processing.org/examples/tree.html

f

f-1

https://processing.org/examples/tree.html


Lets start out simple…

Translate a point [x y]T by [tx ty]
T : 

x’ = x + tx

y’ = y + ty

Rotate a point [x y]T by an angle t : 
x’ = x cost  - y sint
y’ = x sint + y cost

Scale a point [x y]T by a factor [sx sy]
T 

x’ = x sx

y’ = y sy



Representing 2D transforms as a 2x2 matrix

Rotate a point [x y]T by an angle t : 

x’   =   cost   -sint 0        x
y’    sint cost   0       y
1            0         0     1       1 

Scale a point [x y]T by a factor [sx sy]
T 

x’   =   sx 0   0      x
y’        0   sy 0      y 
1         0    0   1      1

Translate?



Cartesian  Homogeneous 2D Points

Cartesian [x y]T => Homogeneous [x y 1]T

Homogeneous [x y w]T => Cartesian [x/w   y/w   1]T

What about w=0?

Homogeneous points are equal if they represent the same
Cartesian point. For eg. [4 -6 2] T = [-6 9 -3] T.



Points at ∞ in Homogeneous Coordinates

[x y w] T with w=0 represent points at infinity, though with
direction [x y] T  and thus provide a natural representation for
vectors, distinct from points in Homogeneous coordinates.



Points as Homogeneous 2D Point Coords

[1 0]T

[0 1]T

p=[a b 1]T

p= a*[1 0 0]T + b*[0 1 0]T +[0 0 1]T

basis vectors        origin



Line Equations in Homogeneous Coordinates

A line given by the equation 
ax+by+c=0

can be represented in Homogeneous coordinates as:

l=[a b c] , making the line equation 

l.p= [a b c][x y 1] T =0.

Aside: cross product as a matrix  
[ 0  -c   b] [x y 1] T

[ c   0  -a]
[-b   a   0]



The Line Passing Through 2 Points

For a line l that passes through two points p0, p1

we have l.p0 = l.p1 = 0. 

As vectors we can thus write l using a cross product
as:

l= p0 X p1

p0

p1

Remember uxv



Point of intersection of 2 lines

For a point that is the intersection of two lines l0, l1

we have p.l0 = p.l1 = 0. 

We can write p using a cross product as:
p= l0 X l1

l1

l0 p

What happens when the lines are parallel? 

Remember uxv



Representing 2D transforms as a 3x3 matrix

Translate a point [x y]T by [tx ty]
T :

x’   =   1 0  tx x
y’        0 1  ty y
1         0 0  1      1

Rotate a point [x y]T by an angle t : 

x’   =   cost   -sint 0       x
y’    sint cost   0       y
1            0         0     1       1 

Scale a point [x y]T by a factor [sx sy]
T 

x’    =   sx 0   0     x
y’         0   sy 0     y 
1          0    0   1     1



Properties of 2D transforms

…these 3x3 transforms have a variety of properties.
most generally they map lines to lines. Such invertible 
transforms are also called Homographies.

…a more restricted set of transformations also preserve 
parallelism in lines. These are called Affine transforms.

…transforms that further preserve the angle between 
lines are called Conformal.

…transforms that additionally preserve the lengths of 
line segments are called Rigid.

Where do translate, rotate and scale fit into these?



Properties of 2D transforms

Homography (preserve lines)

Affine (preserve parallelism)
shear, scale

Conformal (preserve angles)
uniform scale

Rigid (preserve lengths)
rotate, translate



Homography: mapping four points

How does the mapping of 4 points uniquely define the 3x3 Homography matrix? 



Homography: preserving lines

Show that if points p lie on some line l, 
then their transformed points p’ also lie on some line l’.

Proof:
We are given that l.p = 0 and p’=Hp. Since H is invertible, p=H-1p’.
Thus l.(H-1p’)=0  =>  (lH-1).p’=0, or p’ lies on a line l’= lH-1.

QED



Affine: preserving parallel lines

What restriction does the Affine property impose on H?

If two lines are parallel their intersection point at infinity,
is of the form [x y 0]T.

If these lines map to lines that are still parallel, then [x y 0]T

transformed must continue to map to a point at infinity or [x’ y’ 0]T

i.e. [x’ y’ 0]T =     *    *   *   [x y 0]T

*    *   *
?    ?    ?



Affine: preserving parallel lines

What restriction does the Affine property impose on H?

If two lines are parallel their intersection point at infinity,
is of the form [x y 0]T.

If these lines map to lines that are still parallel, then [x y 0]T

transformed must continue to map to a point at infinity or [x’ y’ 0]T

i.e. [x’ y’ 0]T =        A      t [x y 0]T

0   0 1

In Cartesian co-ordinates Affine transforms can be written as:

p’ = Ap + t



Affine properties: composition

Affine transforms are closed under composition. i.e.
Applying transform (A1,t1) (A2,t2) in sequence results in an overall
Affine transform.

p’= A2 (A1p+t1) + t2 => (A2 A1)p+  (A2t1 + t2)



Affine properties: inverse

The inverse of an Affine transform is Affine. 
- Prove it!



Affine transform: geometric interpretation

A change of basis vectors and translation of the origin 

t

A

a1

a2

a1 a2    t     p

0     0    1

p

point p in the local coordinates of a reference frame defined by <a1,a2,t> is 

-1



Affine transform: change of reference frame

How can we transform a point p from one reference frame <a1,b1,o1>,
to another frame <a2,b2,o2>?

a1
b1

p

a2

o1

b2

o2



Composing Transformations

Any sequence of linear transforms can be collapsed into a single
3x3 matrix by concatenating the transforms in the sequence.

In general transforms DO NOT commute, however certain combinations
of transformations are commutative…

try out various combinations of translate, rotate, scale.



Rotation about a fixed point

The typical rotation matrix, rotates points about the origin.
To rotate about specific point q, use the ability to compose
transforms…

Tq R T-q



Topic 4:

Coordinate-Free Geometry
(CFG)

• A brief introduction & basic ideas



CFG: dimension free geometric reasoning 

Points       p   [ … 1]
Vectors     v [ … 0]
Lines         l    [ ….. ]

Dot products, Cross products,
Length of vectors,
Weighted average of points…

How do you find the angle between 2 vectors?



Topic 5:

3D Objects

• General curves & surfaces in 3D

• Normal vectors, surface curves & tangent planes

• Implicit surface representations

• Example surfaces:
surfaces of revolution, bilinear patches, quadrics



3D parametric curves

p(t)=(fx(t),fy(t),fz(t)))



3D parametric surfaces

p(t,s)=(fx(t,s),fy(t,s),fz(t,s)))



3D parametric plane

p(s,t)= q + as +tb

q a

b
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3D Objects

• General curves & surfaces in 3D

• Normal vectors, surface curves & tangent planes

• Implicit surface representations

• Example surfaces:
surfaces of revolution, bilinear patches, quadrics



Tangent / Normal vectors of 2D curves

Explicit:         y=f(x).  Tangent is dy/dx.

Parametric:  x=fx(t) Tangent is (dx/dt, dy/dt)

y=fy(t)

Implicit:        f(x,y) = 0 Normal is gradient(f).

direction of max. change

Given a tangent or normal vector in 2D how do we 
compute the other?

What about in 3D?



Normal vector of a plane

q a

b

p(s,t)= q + as +tb



Normal vector of a plane

q a

bn

n=aXb



Normal vector of a parametric surface

[f(u0,v0)]

f(u0,v)
f(u,v0)



Normal vector of a parametric surface

[f(u0,v0)]

f(u0,v)
f(u,v0)

n=f’(u0,v) X f’(u,v0)

n
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3D Objects

• General curves & surfaces in 3D

• Normal vectors, surface curves & tangent planes

• Implicit surface representations

• Example surfaces:
surfaces of revolution, bilinear patches, quadrics



Implicit function of a plane

q a

bn

f(p) = (p-q).n=0



Implicit function: level sets
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• General curves & surfaces in 3D

• Normal vectors, surface curves & tangent planes

• Implicit surface representations

• Example surfaces:
surfaces of revolution, bilinear patches, quadrics



3D parametric surfaces

• Extrude
• Revolve
• Loft
• Square

Demo…



3D parametric surfaces: Coons interpolation

b0

b3

b2b1

interpolate(b0,b2)

interpolate(b1,b3)

bilinear
interpolation


