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3D	Printable	Structures

Real-time	Physics	using	ML



https://s2018.siggraph.org/conference/conference-overview/student-volunteers/



Showtime:	



Today’s	Topics
2.	Review	Implicit	Curve	Representation	

3.	 Transformations	in	2D

4. Coordinate-free	geometry

5.		3D	Objects	(curves	&	surfaces)

6.		Transformations	in	3D



Questions	about	the	Midterm
If	you	have	a	valid,	documented reason	for	missing	the	midterm	

exam,		your	final	exam	will	be	worth	50%



Questions	about	the	Assignment
Please	contact	the	TAs	via	email	at	csc418tas@cs.toronto.edu



Topic	2.

2D	Curve	Representations

• Explicit	representation
• Parametric	representation
• Tangent	&	normal	vectors
• Implicit	representation



Implicit	Curve	Representation:	Definition



Implicit	Curve	Representation:	Definition



Implicit	Curve	Representation:	Definition



Normal	Vectors	from	the	Implicit	Equation	



Topic	3:

2D	Transformations

• Simple	Transformations	
• Homogeneous	coordinates
• Homogeneous	2D	transformations
• Affine	transformations	&	restrictions



Transformations	are	Fun



Transformations

Transformation/Deformation	in	Graphics:

A	function	f,	mapping	points	to	points.
simple	transformations	are	usually	invertible.

[x	y] T					 [x’	y’] T	

Applications:
• Placing	objects	in	a	scene.
• Composing	an	object	from	parts.
• Animating	objects.

Processing	Tree	Demo!
https://processing.org/examples/tree.html

f

f-1



Lets	start	out	simple…

Translate a	point	[x	y]T by	[tx ty]T	:	
x’	=	x	+	tx
y’	=	y	+	ty

Rotate a	point	[x	y]T by	an	angle	t :	
x’	=	x	cost		- y	sint
y’	=	x	sint +	y	cost

Scale a	point	[x	y]T by	a	factor	[sx sy]T	
x’	=	x	sx
y’	=	y	sy



Representing	2D	transforms	as	a	2x2	matrix

Rotate a	point	[x	y]T by	an	angle	t :	

x’			=			cost			-sint x
y’				 sint cost									y

Scale a	point	[x	y]T by	a	factor	[sx sy]T	

x’			=			sx 0									x
y’								0			sy y	



Linear	Transformations



Finding	matrices



Finding	matrices
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Transformation	of	a	point	is	determined	by	a	transformation	of	the	basis	vectors	



Finding	matrices



Representing	2D	transforms	as	a	2x2	matrix

Rotate a	point	[x	y]T by	an	angle	t :	

x’			=			cost			-sint x
y’				 sint cost									y

Scale a	point	[x	y]T by	a	factor	[sx sy]T	

x’			=			sx 0									x
y’								0			sy y	

Translation	?



Representing	2D	transforms	as	a	2x2	matrix

Rotate a	point	[x	y]T by	an	angle	t :	

x’			=			cost			-sint x
y’				 sint cost									y

Scale a	point	[x	y]T by	a	factor	[sx sy]T	

x’			=			sx 0									x
y’								0			sy y	

Translate a	point	[x	y]T by	[tx ty]T	:	
x’	=	x	+	tx
y’	=	y	+	ty



Intuition	via	Shearing	



Translation	via	Shearing



Homogeneous	coordinates



Points	as	Homogeneous	2D	Point	Coords

[1	0]T

[0	1]T

p=[x	y	1]T

p=	x[1	0	0]T	+	y[0	1	0]T

+[0	0	1]T

basis	vectors



Homogeneous	coordinates	in	2D:	basic	idea



Homogeneous	coordinates	in	2D:	points



Representing	2D	transforms	as	a	3x3	matrix

Translate a	point	[x	y]T by	[tx ty]T	:

x’			=			1	0		tx x
y’								0	1		ty y
1									0	0		1						1

Rotate a	point	[x	y]T by	an	angle	t :	

x’			=			cost			-sint 0							x
y’				 sint cost			0							y
1												0									0					1							1	

Scale a	point	[x	y]T by	a	factor	[sx sy]T	

x’				=			sx 0			0					x
y’									0			sy 0					y	
1										0				0			1					1



Cartesian	ó Homogeneous	2D	Points

Cartesian	[x	y]T =>	Homogeneous	[x	y	1]T

Homogeneous	[x	y	w]T	 =>	Cartesian	[x/w			y/w			1]T

Homogeneous	points	are	equal	if	they	represent	the	same
Cartesian	point.	For	eg.	[4	-6	2] T =	[-6	9	-3] T.



Geometric	Intuition

w

x

y
w =	1

(x’,y’,1)

(0*x’,0*y’,0)

(w*x’,w*y’,w)

(x’,y’,0)



Points	at	∞	in	Homogeneous	Coordinates

[x	y	w] T with	w=0	represent	points	at	infinity,	though	with
direction	[x	y] T		and	thus	provide	a	natural	representation	for
vectors,	distinct	from	points	in	Homogeneous	coordinates.



Line	Equations	in	Homogeneous	Coordinates

A	line	given	by	the	equation	
ax+by+c=0

can	be	represented	in	Homogeneous	coordinates	as:

l=[a	b	c]	,	making	the	line	equation	

l.p=	[a	b	c][x	y	1] T	=0.



The	Line	Passing	Through	2	Points

For	a	line	l	that	passes	through	two	points	p0,	p1

we	have	l.p0 =	l.p1 =	0.	

In	other	words	we	can	write	l	using	a	cross	product
as:

l=	p0 X	p1

p0

p1



Point	of	intersection	of	2	lines

For	a	point	that	is	the	intersection	of	two	lines	l0,	l1

we	have	p.l0 =	p.l1 =	0.	

In	other	words	we	can	write	p	using	a	cross	product	as:
p=	l0 X	l1

l1

l0 p

What	happens	when	the	lines	are	parallel?	



A	Line	through	2	Points	

For	a	line	going	through	two	points	we	have		p0,	p1

we	have	p0.l	=	p1.l	=	0.	

p0

p1



Properties	of	2D	transforms

…these	3x3	transforms	have	a	variety	of	properties.
most	generally	they	map	lines to	lines.	Such	invertible	
Linear transforms	are	also	called	Homographies.

…a	more	restricted	set	of	transformations	also	preserve	
parallelism	in	lines.	These	are	called	Affine transforms.

…transforms	that	further	preserve	the	angle	between	
lines	are	called	Conformal.

…transforms	that	additionally	preserve	the	lengths	of	
line	segments	are	called	Rigid.

Where	do	translate,	rotate	and	scale	fit	into	these?



Properties	of	2D	transforms

Homography,	Linear	(preserve	lines)

Affine	(preserve	parallelism)
shear,	scale

Conformal	(preserve	angles)
uniform	scale

Rigid	(preserve	lengths)
rotate,	translate



Homography:	mapping	four	points

How	does	the	mapping	of	4	points	uniquely	define	the	3x3	Homography matrix?	



Homography:	preserving	lines

Show	that	if	points	p	lie	on	some	line	l,	
then	their	transformed	points	p’	also	lie	on	some	line	l’.



Homography:	preserving	lines

Show	that	if	points	p	lie	on	some	line	l,	
then	their	transformed	points	p’	also	lie	on	some	line	l’.

Proof:
We	are	given	that	l.p =	0	and	p’=Hp.	Since	H	is	invertible,	p=H-1p’.
Thus	l.(H-1p’)=0		=>		(lH-1).p’=0,	or	p’	lies	on	a	line	l’= lH-1.

QED



Affine:	preserving	parallel	lines

What	restriction	does	the	Affine	property	impose	on	H?

If	two	lines	are	parallel	their	intersection	point	at	infinity,
is	of	the	form	[x	y	0]T.

If	these	lines	map	to	lines	that	are	still	parallel,	then	[x	y	0]T
transformed	must	continue	to	map	to	a	point	at	infinity	or	[x’	y’	0]T

i.e.	 [x’	y’	0]T =					*				*			*			[x	y	0]T
*				*			*
?				?				?



Affine:	preserving	parallel	lines

What	restriction	does	the	Affine	property	impose	on	H?

If	two	lines	are	parallel	their	intersection	point	at	infinity,
is	of	the	form	[x	y	0]T.

If	these	lines	map	to	lines	that	are	still	parallel,	then	[x	y	0]T
transformed	must	continue	to	map	to	a	point	at	infinity	or	[x’	y’	0]T

i.e.	 [x’	y’	0]T =								A						t [x	y	0]T

0			0 1

In	Cartesian	co-ordinates	Affine	transforms	can	be	written	as:

p’	=	Ap +	t



Affine	Transformations:	Composition



Affine	properties:	inverse

The	inverse	of	an	Affine	transform	is	Affine.	
- Prove	it!



Affine	Transformations:	Inverse



Recall:	Finding	matrices
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Transformation	of	a	point	is	determined	by	a	transformation	of	the	basis	vectors	



Affine	transform:	geometric	interpretation

A	change	of	basis	vectors	and	translation	of	the	origin	

t

A

a1
a2

a1	a2				t					p

0					0				1

p

point	p	in	the	local	coordinates	of	a	reference	frame	defined	by	<a1,a2,t>	is	
-1



Composing	Transformations

Any	sequence	of	linear	transforms	can	be	collapsed	into	a	single
3x3	matrix	by	concatenating	the	transforms	in	the	sequence.

In	general	transforms	DO	NOT	commute,	however	certain	combinations
of	transformations	are	commutative…

try	out	various	combinations	of	translate,	rotate,	scale.



Rotation	about	a	fixed	point

The	typical	rotation	matrix,	rotates	points	about	the	origin.
How	do	you	rotate	about	specific	point	q

Tq R	T-q



Topic	4:

Coordinate-Free	Geometry
(CFG)

• A	brief	introduction	&	basic	ideas



Doing	Geometry	Without	Coordinates



CFG:	Key	Objects	&	their	Homogeneous	Repr.



CFG:	Basic	Geometric	Operations



More	CFG	Ops:	Linear	Vector	Combination



More	CFG	Ops:	Affine	Point	Combination



More	CFG	Ops:	Operations	w/	Scalar	Result	



Lecture	3	Starts	Here



Showtime



SIGGRAPH	Submissions



SIGGRAPH	Submissions





https://s2018.siggraph.org/conference/conference-overview/student-volunteers/



Questions	about	the	Midterm
If	you	have	a	valid,	documented reason	for	missing	the	midterm	

exam,		your	final	exam	will	be	worth	50%

Midterm	will	be	in	tutorials	so	if	you	are	in	my	tutorial	that	
means	Monday,	February	12



Questions	about	the	Assignment
Please	contact	the	TAs	via	email	at	csc418tas@cs.toronto.edu

Assignment	2	is	not	due	during	reading	week.	It	will	be	due	the	
Monday	after	reading	week	February	26th.



Topic	5:

3D	Objects

• General	curves	&	surfaces	in	3D
• Normal	vectors,	surface	curves	&	tangent	planes
• Implicit	surface	representations
• Example	surfaces:

surfaces	of	revolution,	bilinear	patches,	quadrics



Reminder:	Curves	in	2D



Curves	in	3D



Surfaces	in	3D



Surface	Example:	Planes	in	3D	



Topic	5:

3D	Objects

• General	curves	&	surfaces	in	3D
• Normal	vectors,	surface	curves	&	tangent	planes
• Implicit	surface	representations
• Example	surfaces:

surfaces	of	revolution,	bilinear	patches,	quadrics



Tangent	/	Normal	vectors	of	2D	curves

Explicit:		y=f(x).		 Tangent	is	dy/dx.
Parametric:	x=fx(t) Tangent	is	(dx/dt,	dy/dt)

y=fy(t)
Implicit:	f(x,y)	=	0 Normal	is	gradient(f).

direction	of	max.	change

Given	a	tangent	or	normal	vector	in	2D	how	do	we	
compute	the	other?

What	about	in	3D?



Normal	vector	of	a	plane

q a

b

p(s,t)=	q	+	as	+tb



Normal	vector	of	a	plane

q a

bn

n=aXb



Normal	vector	of	a	parametric	surface

[f(u0,v0)]

f(u0,v)
f(u,v0)



Tangent	vectors	of	a	parametric	surface

[f(u0,v0)]

f(u0,v)
f(u,v0)



v
•

U Icu ,v)=[Fx( air ) ,Fy( a ,v ) ,fz(and\
.⇒

e.
DX

Z



v

f-
ITT 's

•

U Ecu ,v)=[Fx( air ) ,Fy( a ,v ) ,fz(AND

C
'1

.Fit2D Curvem÷
e

DX

Z



Now	some	more	math

C
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Vector tangential Gradient of 3D of C
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Independent of C !
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Vector tangential Gradient of 3D of C

to surface Parametric Surface

Independent of C !



Normal	vector	of	a	parametric	surface

[f(u0,v0)]

f(u0,v)
f(u,v0)

n=f’(u0,v)	X	f’(u,v0)

n



Topic	5:

3D	Objects

• General	curves	&	surfaces	in	3D
• Normal	vectors,	surface	curves	&	tangent	planes
• Implicit	surface	representations
• Example	surfaces:

surfaces	of	revolution,	bilinear	patches,	quadrics



Implicit	function	of	a	plane

q a

bn

f(p)	=	(p-q).n=0



Implicit	function:	level	sets



Representing	Surfaces	by	an	Implicit	Function



Example:	The	Implicit	Function	of	a	Plane



Surface	Normals	from	the	Implicit		Function



Surface	Normals	from	the	Implicit	Function



Topic	5:

3D	Objects

• General	curves	&	surfaces	in	3D
• Normal	vectors,	surface	curves	&	tangent	planes
• Implicit	surface	representations
• Example	surfaces:

surfaces	of	revolution,	bilinear	patches,	quadrics



3D	parametric	surfaces

• Extrude
• Revolve
• Loft
• Square



Surfaces	of	Revolution:	Basic	Construction



Example:	The	Cylinder



Example:	Implicit	Function	of	the	Cylinder



Example:	The	Torus	as	a	Surface	of	
Revolution



3D	parametric	surfaces:	Coons	interpolation

b0
b3

b2b1

interpolate(b0,b2)

interpolate(b1,b3)

bilinear
interpolation


