Introduction to spagetti and meatballs

Topic 0.

Introduction:

What Is Computer Graphics?

CSC 418/2504: Computer Graphics
Course web site (includes course information sheet):
http://www.dgp.toronto.edu/~karan/courses/418/

Instructors:

LO101, W 12-2pm	LO201, T 3-5pm
Karan Singh	Alec Jacobson
BA 5258	BA 5266
$978-7201$	$946-8630$
karan@dgp.toronto.edu	jacobson@dgp.toronto.edu
office hours: W 2-4pm or by appointment.	office hours: T 5-7pm
	or by appointment.

Textbooks: Fundamentals of Computer Graphics OpenGL Programming Guide \& Reference
Tutorials: (first tutorial next week)

Today's Topics
0. Introduction: What is Computer Graphics?

1. Basics of scan conversion (line drawing)
2. Representing 2D curves

What is Computer Graphics?

Computers:

accept, process, transform and present information.

Computer Graphics:
accept, process, transform and present information in a visual form.

Ok but... what is the course really about?

The science of turning the rules of geometry, motion and physics into (digital) pictures that mean something to people

What its not about?

Photoshop, AutoCAD, Maya, Renderman, Graphics APIs.
...wow, heavy math and computer science!!

Games

Games emphasize the interactivity and AI
Push CG hardware to the limits (for real time performance)

Scientific and Medical Visualization, Operation
Requires handling large datasets
May need device integration
Real-time interactive modeling \& visualization

Movies

Movies define directions in CG
Set quality standards
Driving medium for CG

Design
CG for prototyping and fabrication
Requires precision modeling and engineering visualization

GUIs, AR/VR, scanners...
Interaction with software \& hardware, I/O of 3D data
Emphasis on usability

Computer Graphics: Basic Questions

- Form (modeling)

How do we represent (2D or 3D) objects \& environments?
How do we build these representations?

- Function, Behavior (animation)

How do we represent the way objects move?
How do we define \& control their motion?

- Appearance (rendering)

How do we represent the appearance of objects?
How do we simulate the image-forming process?

Form \& Appearance in CG

Graphics Pipeline: Modeling
How do we represent an object geometrically on a computer?

What is an Image?

Image = distribution of light energy on 2D "film"
Digital images represented as rectangular arrays of pixels

The Graphics Pipeline

Graphics Pipeline: Animation

Input: Scene description, lighting, camera
Output: Image that the camera will observe... accounting for visibility, clipping, projection,...

What You Will Take Away ...

\#1: yes, math IS useful in CS !!
\#2: how to turn math \& physics into pictures.
\#3: basics of image synthesis
\#4: how to code CG tools

Topic 1.

Basic Raster Operations: Line Drawing

- A simple (but inefficient) line drawing algorithm - Line anti-aliasing

Course Topics

Principles
Theoretical \& practical foundations of CG
(core mathematics, physics, modeling methods)

CG programming (assignments \& tutorials)

- Experience with OpenGL (industry-standard CG library)
- Creating CG scenes

Administrivia

Grading:

- 50\%: 3 assignments handed out in class (25\% 15\% 10\%).
- 50\%: 1 test in class (15%) +1 final exam (35\%).
- First assignment: on web in two weeks.
- Wooden Monkey assignment on web now!
- Check web for schedule, dates, more details \& policy on late assignments

Tutorial sessions

- Math refreshers, OpenGL tutorials, additional topics.
- Attendance STRONGLY encouraged since I will not be lecturing on these topics in class.

Lecture slides \& course notes, already on web.

2D Drawing

Common geometric primitives:

When drawing a picture, 2D geometric primitives are specified as if they are drawn on a continuous plane

Drawing command:
Draw a line from point $(10,5)$
to point $(80,60)$

In reality, computer displays are arrays of pixels, not abstract mathematical continuous planes
Continuous line

In graphics, the conversion from continuous to discrete 2D primitives is called scan conversion or rasterization

Line Scan Conversion: Key Objectives

Accuracy:
pixels should approximate line closely.

Speed:
line drawing should be efficient

Visual Quality:
No discernable "artifacts".

Algorithm I

DDA (Digital Differential Analyzer)
Explicit form:
$y=d y / d x *(x-x 0)+y 0$
float y;
int x ;
$d x=x 1-x 0 ; d y=y 1-y 0 ;$
$m=d y / d x ;$
$\mathrm{y}=\mathrm{y} 0$
for ($x=x 0 ; x<=x 1 ; x++$)
\{
setpixel (x , round(y));
$y=y+m ;$
\}

Algorithm I (gaps when m>1)

DDA (Digital Differential Analyzer)
Explicit form:
$y=d y / d x *(x-x 0)+y 0$
float y;
int x ;
$d x=x 1-x 0 ; d y=y 1-y 0 ;$
$\mathrm{m}=\mathrm{dy} / \mathrm{dx}$;
$\mathrm{y}=\mathrm{y} 0$;
for ($x=x 0 ; x<=x 1 ; x++$)
\{
setpixel (x, round (y));
$y=y+m$
\}

Aliasing

Raster line drawing can produce a "jaggy" appearance.

- Jaggies are an instance of a phenomenon called aliasing.
- Removal of these artifacts is called anti-aliasing.

Anti-Aliasing
How can we make a digital line appear less jaggy?

Main idea: Rather than just drawing in 0's and 1's, use "inbetween" values in neighborhood of the mathematical line.

Topic 2.

2D Curve Representations

- Explicit representation
- Parametric representation
- Implicit representation
- Tangent \& normal vectors

Explicit Curve Representations: Limitations

Curve represented by a function f such that:
$y=f(x)$

Curve represented by two functions f_{x}, f_{y}
And an interval $[a, b]$
such that:
$(x, y)=\left(f_{x}(t), f_{y}(t)\right)$
are points on the curve for
t in $[a, b]$

A curve is closed when ??

Line Segment as interpolation

```
\(p(t)=a_{0}+a_{1} * t\)
```


Polygons

Polygon: A continuous piecewise linear closed curve.
Simple polygon: non-self intersecting.
Convex: all angle less than 180 degrees.
Regular: simple, equilateral, equiangular.
n-gon: $p i=r(\cos (2 \pi i / n), \sin (2 \pi i / n)), 0 \leq i<n$

$p(t)=p_{0}+\left(p_{1}-p_{0}\right){ }^{*} t, 0 \leq t \leq 1$
$0 \leq t \leq \infty$: ray from p_{0} through p_{1} $-\infty \leq t \leq \infty$: line through p_{0} and p_{1}

In general if $p(t)=a_{0}+a_{1} * t$, how do you solve for $\boldsymbol{a}_{0}, \boldsymbol{a}_{1}$?

$$
p(t)=a_{0}+a_{1} * t+a_{2} * t^{2}+a_{3} * t^{3}
$$

Representations of a Circle

Parametric:
$p(t)=r(\cos (2 \pi t), \sin (2 \pi t)), \quad 0 \leq t \leq 1$

Implicit:
$x^{2}+y^{2}-r^{2}=0$

Representations of an Ellipse

Parametric:
$p(t)=(a * \cos (2 \pi t), b * \sin (2 \pi t)), \quad 0 \leq t \leq 1$
Implicit:
$x^{2} / a^{2}+y^{2} / b^{2}-1=0$

Curve tangent and normal

Parametric
$p(t)=(x(t), y(t)) . \quad$ Tangent: $\left(x^{\prime}(t), y^{\prime}(t)\right)$.
Implicit:
$f(x, y)=0 . \quad$ Normal: $\operatorname{gradient}(f(x, y))$.

Tangent and normal are orthogonal.

