
EF432

Introduction to spagetti and meatballs



CSC 418/2504: Computer Graphics
Course web site (includes course information sheet):

http://www.dgp.toronto.edu/~karan/courses/418/

Instructors: 

L2501, T 6-8pm L0101, W 3-5pm

Karan Singh David Levin

BA 5258 BA 5268

978-7201 978-2052

karan@dgp.toronto.edu diwlevin@cs.toronto.edu

office hours: T 5-6pm office hours: W 2-3pm

or by appointment. or by appointment.

Textbooks:  Fundamentals of Computer Graphics 
OpenGL Programming Guide & Reference

Tutorials: (first tutorial next week)

mailto:karan@dgp.toronto.edu
mailto:diwlevin@cs.toronto.edu




Topics

0. Introduction: What is Computer Graphics?

1.  Basics of scan conversion (line drawing)

2. Representing 2D curves

3. 2D Transformations

4. Coordinate Free Geometry CFG

5. 3D Objects

6. 3D curve design

7. 3D Transformations

8. 3D Viewing

9. Visibility

10. Lighting and local illumination

11. Shading

12. Texture mapping

13. Ray Tracing and Global illumination

14. Animation



Topic 0.

Introduction:
What Is Computer Graphics?



What is Computer Graphics?

Computers:

accept, process, transform and present information.

Computer Graphics:

accept, process, transform and present information 

in a visual form. 



Ok but… what is the course really about?

The science of turning the rules of geometry, motion and physics 
into (digital) pictures that mean something to people

What its not about?

Photoshop, AutoCAD, Maya, Renderman, Graphics APIs.

…wow, heavy math and computer science!! 



Movies define directions in CG
Set quality standards
Driving medium for CG

Movies 



Games emphasize the interactivity and AI

Push CG hardware to the limits (for real time performance)

Games



CG for prototyping and fabrication

Requires precision modeling and engineering visualization

Design



Requires handling large datasets

May need device integration

Real-time interactive modeling & visualization

Scientific and Medical Visualization, Operation



Interaction with software & hardware, I/O of 3D data

Emphasis on usability

GUIs, AR/VR, scanners…



Computer Graphics: Basic Questions

• Form (modeling)

How do we represent (2D or 3D) objects & environments?

How do we build these representations?

• Function, Behavior (animation)

How do we represent the way objects move?

How do we define & control their motion?

• Appearance (rendering)

How do we represent the appearance of objects?

How do we simulate the image-forming process?



What is an Image?

Image = distribution of light energy on 2D “film”

Digital images represented as rectangular arrays of pixels



shape/surface 

geometry

illumination

& reflectance

camera

pixel array

Form & Appearance in CG



The Graphics Pipeline

Modeling Animation Rendering

• Geometry: points, curves, 
& surfaces

• Scene Objects: parts, 
relations, & pose

• Texture and reflectance 
(e.g., color, diffusivity, 
opacity, refractions)

• …

• Key-frame, motion 
capture, inverse 
kinematics, dynamics, 
behaviors, motion 
planning, …

• Visibility

• Simulation of light   (e.g., 
illuminants, emissive 
surfaces, scattering, 
transmission, diffraction, 
…) 

• Special effects (e.g., anti-
aliasing, motion blur, non-
photorealism)



Graphics Pipeline: Modeling

Smooth surface patches

Polygon meshes

Point clouds

Texture maps

Parametric curves

How do we represent an object geometrically on a computer? 

How do we represent an object geometrically on a 
computer?



Graphics Pipeline: Animation

Behavior rules

Key-Framing

Physical simulation



Graphics Pipeline: Rendering

Input:    Scene description, lighting, camera

Output: Image that the camera will observe…
accounting for visibility, clipping, projection,…



Course Topics

Principles

Theoretical & practical foundations of CG
(core mathematics, physics, modeling methods)

CG programming (assignments & tutorials)

• Experience with OpenGL (industry-standard CG library)

• Creating CG scenes



#2:   how to turn math & physics into pictures.

#1:   yes, math IS useful in CS !!

What You Will Take Away …

#3:   basics of image synthesis

#4:   how to code CG tools



Administrivia
Grading:

• 50%: 3 assignments handed out in class
(25% 15% 10%).

• 50%: 1 test in class (15%) + 1 final exam (35%).

• First assignment: on web in two weeks.

• Wooden Monkey assignment on web now!

• Check web for schedule, dates, more details & policy on late assignments.

Tutorial sessions:

• Math refreshers, tutorials on OpenGL and other graphical libraries, 
additional topics.

• Attendance STRONGLY encouraged since I will not be lecturing on these 
topics in class.

Lecture slides & course notes, already on web.



Topic 1.

Basic Raster Operations:
Line Drawing

• A simple line drawing algorithm

•Line anti-aliasing



2D Drawing

Common geometric primitives:

When drawing a picture, 2D geometric primitives are specified 
as if they are drawn on a continuous plane

(10,5)

(80,60)

x

y

Drawing command:
Draw a line from point (10,5)
to point (80,60)



2D Drawing

In reality, computer displays are arrays of pixels, not abstract 
mathematical continuous planes

In graphics, the conversion from continuous to discrete 2D 
primitives is called scan conversion or rasterization

x

(10,5)

(80,60)

y

Continuous line

x

y

Digital line



• Scan conversion: Given a pair of pixels defining the line’s 
endpoints & a color, paint all pixels that lie on the line.

• Clipping: If one or more endpoints is out of bounds, paint only 
the line segment that is within bounds.

• Region filling: Fill in all pixels within a given closed connected 
boundary of pixels.

Basic Raster Operations (for 2D lines)



Line Scan Conversion: Key Objectives

Digital line

Accuracy: 

pixels should approximate line closely. 

Speed:

line drawing should be efficient

Visual Quality:

No discernable “artifacts”.



Equation of a Line 

Line between (x0,y0) and (x1,y1)

dx= x1 – x0 ,dy=y1 – y0

Explicit : y = mx + b 

m=dy/dx, b=y0 -mx0

Parametric :

x(t) = x0 + dx*t 

y(t) = y0 + dy*t

P = P0 + (P1-P0)*t

P = P0*(1-t) + P1*t (weighted sum)

Implicit :  (x-x0)dy - (y-y0)dx = 0



Algorithm I 

DDA (Digital Differential Analyzer)

Explicit form:

y= dy/dx * (x-x0) + y0 

float y;

int x;

dx = x1-x0; dy = y1 – y0;

m = dy/dx;

y= y0;

for ( x=x0; x<=x1; x++)

{

setpixel (x, round(y));

y= y + m;

}



Algorithm I (gaps when m>1) 

DDA (Digital Differential Analyzer)

Explicit form:

y= dy/dx * (x-x0) + y0 

float y;

int x;

dx = x1-x0; dy = y1 – y0;

m = dy/dx;

y= y0;

for ( x=x0; x<=x1; x++)

{

setpixel (x, round(y));

y= y + m;

}



Aliasing

Raster line drawing can produce a “jaggy” appearance.

•Jaggies are an instance of a phenomenon called aliasing.

• Removal of these artifacts is called anti-aliasing.

“Jaggy”



How can we make a digital line appear less jaggy?

Main idea: Rather than just drawing in 0’s and 1’s, use “in-
between” values in neighborhood of the mathematical line.

Anti-Aliasing

Aliased line Anti-aliased line

Intensity proportional to pixel 
area covered by “thick” line



Anti-Aliasing: Example

Aliased line

Anti-aliased line



Topic 2.

2D Curve Representations

• Explicit representation

• Parametric representation

•Implicit representation

•Tangent & normal vectors



Explicit Curve Representations: Definition

Curve represented by a function f

such that: 

y=f(x)

line:   y=mx+b

x

f(x)



Explicit Curve Representations: Limitations

Curve represented by a function f

such that: 

y=f(x)

x

f(x)



Parametric Curve Representation: Definition

Curve represented by two functions fx , fy

And an interval [a,b]

such that: 

(x,y)=( fx(t) , fy(t) )

are points on the curve for

t in [a,b]

A curve is closed when ??

( fx(t) , fy(t) )



Parametric Representation of a Line Segment

pt) = p0 + (p1 – p0)*t  ,  0 ≤ t  ≤ 1

p0

p1

: ray from      through    p0 p10 ≤ t  ≤ ∞

: line through      and  p0 p1-∞ ≤ t  ≤ ∞

In general if  p(t) = a0 + a1*t , how do you solve for a0, a1 ?



Line Segment as interpolation

p(t) = a0 + a1*t

p0

p1

p3

p2



Curve as interpolation (Catmull-Romm)

p(t) = a0 + a1*t + a2*t2 + a3*t3

p0

p1

p3

p2



Polygons

n-gon: pi = r(cos(2πi/n), sin(2πi/n)) ,  0 ≤ i <n

p0

p1

p2

Polygon: A continuous piecewise linear closed curve.

Simple polygon: non-self intersecting.
Convex: all angle less than 180 degrees.
Regular: simple, equilateral, equiangular.

pn



Representations of a Circle

Parametric:

p(t) = r(cos(2πt), sin(2πt)) ,  0 ≤ t  ≤ 1

Implicit:

x2+y2-r2=0

r



Representations of an Ellipse

Parametric:

p(t) = (a*cos(2πt), b*sin(2πt)),  0 ≤ t  ≤ 1

Implicit:

x2/a2+y2/b2-1=0
a

b



Curve tangent and normal

Parametric:

p(t) = (x(t),y(t)).  Tangent: (x’(t),y’(t)).

Implicit:

f(x,y) =0. Normal: gradient(f(x,y)).

Tangent and normal are orthogonal.


