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Abstract—Artificial Intelligence (AI), especially Neural Net-
works (NNs), has become increasingly popular. However, people
usually treat AI as a tool, focusing on improving outcome,
accuracy, and performance while paying less attention to the
representation of AI itself. We present AIive, an interactive vi-
sualization of AI in Virtual Reality (VR) that brings AI “alive”.
AIive enables users to manipulate the parameters of NNs with
virtual hands and provides auditory feedback for the real-time
values of loss, accuracy, and hyperparameters. Thus, AIive
contributes an artistic and intuitive way to represent AI by
integrating visualization, sonification, and direct manipulation
in VR, potentially targeting a wide range of audiences.

Keywords-artificial intelligence; virtual reality; human-
computer interaction; sonification; visualization;

I. INTRODUCTION

AI has led to breakthroughs in areas such as image
classification, object detection, and machine translation [1].
However, most research treats AI as a tool to accomplish
tasks, focusing on boosting outcome and performance, with
little attention paid to exploring the representation of NNs
itself [2]–[5]. Meanwhile, the lack of transparency and inter-
pretability of AI is a problem that needs to be addressed [6]–
[8]. In this paper, we explore the concept of representing AI
as a living being to uncover the inner workings of NNs in
an experienceable way: it moves, changes colors, creates

sounds as training progresses, and even responds to the
users’ interaction with it.

To instantiate this concept, we present AIive, an interactive
visualization that brings AI “alive”, it leverages basic human
sensory and motor activities: seeing, listening, and grabbing
and moving objects for an intuitive, artistic, and enjoyable
experience. Given the benefits of immersive analytics [9],
[10], data visualization and sonification in 3D [11]–[13],
we extend the 2D implementation of Immersions [4], and
visualize NNs as 3D force-directed graphs in VR that
allow users to experience the training of the model and
manipulate its architecture using virtual hands. We also
provide the sonification of the accuracy, loss, learning rate,
and momentum for real-time hyperparameter tuning.

II. RELATED WORK

A. Explainable AI and Democratizing AI

The hope of improving AI systems’ transparency and
accessibility triggered the research of explainable AI [7],
[8] and democratization of AI [14]. For example, the Au-
toAI/AutoML by IBM [15] and H2O.ai [16] automate the
end-to-end AI lifecycle to save data scientists from the low-
level coding tasks; The TensorFlow Playground [17] and
GAN Lab [18] by Google allows direct-manipulation on the
in-browser visualizations to help non-experts learn NNs and
GANs. Those tools either decrease the experts’ workload
or help non-experts learn AI, thus requiring numeracy and
graph literacy. AIive however, focus on making AI training
experienceable, thus only relying on basic sensory activities:
sight, hearing, and touch in VR, which would potentially
reach a broader audience.

B. Immersive Analytics and Exploration

Immersion provides benefits such as increased spatial
understanding, decreased information clutter [9], and the
“sense of being there”, which is closely associated with
satisfaction and appealing experience [10]. VR headsets
have been used to provide immersion: DataHop enables
users to layout data analysis steps in VR [19]; AeroVR
provides an immersive environment to aid the aerodynamic
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design [20], and VanHorn et al. developed a deep learning
development environment in VR [21]. VR has also been
used to teach programming [22]–[24], and students found
it more user-friendly, engaging, and better for visualization
concepts compared to the traditional web-based system [23].
Thus, we built AIive in VR to leverage those benefits.

C. Data Visualization and Sonification in 3D
3D data visualization provides the expanded domain of

sensibility [11], enabling a more comprehensive under-
standing of presented information: “data objects”, “data
sculptures” were built to make data experienceable; Game-
like infographics from datasets were made for playable and
engaging experiences [25]. Previous studies have shown
that people found 3D visualization to be more satisfied
and have lower workloads than the 2D counterpart [26].
Data sonification has been used in various fields such as
social sciences [27], [28], arts [29], and health [30], it can
enhance visual representations without creating information
overload [12], thus suitable for conveying dynamical infor-
mation [13]. There have been attempts to combine sonifica-
tion with 3D visualization for representing the connectome
of the human brain [13], communicating sensor data in
workspaces [31], and assisting music composition [32].
AIive builds upon the node-link visualization [2]–[5] and
focuses on sonifying parameters and performances of NNs.

III. AIIVE INTERFACE

A. Visualization
As shown in Figure 2, the NN is visualized using the

node-link approach: (a) Nodes, shown as glowing spheres,
represent neurons in the network. Blue nodes represent the
first hidden layer; yellow nodes represent the second hidden
layer. (b) Links, shown as thin white lines between nodes,
represent the weights (Wi) between two neurons, with their
transparency reflecting the magnitude of the weight: the
smaller the weight, the more transparent the link. Limited by
the computing power of the VR headset, also for simplicity
purposes, we render the input (48 × 48) as a single node in
red, the output (seven categories) as a single node in green.

We use a force-directed graph to represent the network.
Specifically, the graph floats in a zero-gravity environment,
with no energy loss. There are two types of forces between
every two nodes (i, j), the attractive (FAij) and repulsive
(FRij) force. The forces are defined as follows, where ka
and kr being adjustable coefficients and Wij being the real-
time weight between i and j:

−→
FAij = ka ×

−→
W ij

−→
FRij =

kr

distance2(i, j)
For node pairs (i, j) in the same layer, there is no link and
weight between them; thus, we use uniform weights with
|Wij | = 1 to calculate their attraction. We normalized the
value of weights (Wij) to mitigate the impact when weights
vary dramatically among neurons.

Figure 2. The visualization of the neural network with three neurons in
the first hidden layer (blue) and four neurons in the second hidden layer
(yellow). The red node and the green node are input and output, respectively.

B. Sonification

Finding suitable mappings between the space of data and
the space of sounds is conceptual [32]. For simplicity, we
map the values of validation Accuracy and Loss in each
epoch directly to the frequency of sine wave oscillators,
using a Unity plug-in Chunity [33]. Our system plays the
sonification of Accuracy on both channels by default, but
the user can choose to listen to both Accuracy and Loss at
the same time (with Accuracy on the right channel, Loss on
the left), or only the sound of Loss on both channels.

C. Interaction

AIive supports three types of interactions to update the
model’s number of neurons, learning rate & momentum, and
weights of a single neuron (Figure 3).

1) Number of Neurons: To update the number of neurons,
the user can move the left hand close to the graph’s center
of mass (< 5-unit distance in Unity), which would trigger
the appearance of a small sphere, indicating the graph is
paused. A “Paused” message will be sent to the backend
to stop the training. After that, the user can use the right
hand to approach one of the hidden layers. Once the right
hand enters the threshold of 3-unit distance, a small sphere
in the respective layer’s color would appear at its center,
highlighting that the layer will be manipulated. If the user
moves the right hand further closer to the layer’s center of
mass (< 1-unit distance), a new node will be generated, and
the user can drag it to the desired position. To delete a node,
the user can drag it back to its layer’s center. Once they have
done updating, the user can put the left hand down, and the
training would restart with the updated number of neurons.

2) Learning Rate and Momentum: Once the training
begins, the user can adjust the learning rate by placing the
right hand in the mid-air and the left hand close to the
left ear. A white sphere would then appear at the network’s
center, indicating the training is paused. The user can then
adjust the magnitude of learning rates by lifting (increasing)
or dropping (decreasing) the right hand. The new learning
rate’s real-time value will be sonified in the same way as
Accuracy and Loss described in Section III-B. Likewise, the
user can adjust the momentum by placing the right hand
close to the right ear and lifting/dropping the left hand. Once



Figure 3. Tuning momentum and learning rate (A, E) through hand movements; Exploring different weights by dragging nodes around (B); Updating the
number of neurons by pulling new nodes out of the center (C) or dumping old nodes into the center (D).

the user finishes updating and puts both hands down, the
training would resume with updated hyperparameters.

3) Weights of a Single Neuron: We also investigate the
idea of updating weights of neurons manually, as opposed
to using gradient descent. Similar to the way of updating the
number of neurons in Section III-C1, the user can pause the
training with the left hand, then drag any existing node in the
graph with the right hand. Since the operation would change
the distances between the dragged node and the nodes that
it connects with, the weights associated with those nodes
will be updated and sent to the backend for evaluation. To
guide the user on selecting the desired position, the real-time
sonifications of Accuracy and Loss are provided, the user
can move the node around and find the sweet spot where
the pitch of Accuracy sounds high (or low, in the case of
Loss) and release the node. After the user puts down the left
hand, the training would resume with the updated weights.

IV. IMPLEMENTATION

A. Apparatus

The NN model (back-end) runs in the python terminal of
a laptop, the 3D visualization and sonification (front-end)
was built as a Unity [34] project into the Oculus Quest
VR headset [35]. The communication between them was
accomplished through TCP connections [36] wirelessly.

B. Model

We deployed our system on a simple fully-connected NN
in python, based on an intro to machine learning course’s
materials [37]. The dataset provided to the model is a
subset of the Toronto Faces Dataset (TFD) [38], with 3374,
419, and 385 grayscale images from TFD as the training,
validation, and testing set, respectively. The network has two
hidden layers, each with an adjustable number of neurons.
The structure of the network, as well as cross-entropy loss
(L), are shown as follows, where t,y,h1,h2,x represents
the targets, outputs, the first hidden layer, the second hidden
layer, and inputs, respectively:

z1 = W1x+ b1 h1 = ReLU(z1)

z2 = W2h1 + b2 h2 = ReLU(z2)

z3 = W3h2 + b3 y = Softmax(z3)
L = −tᵀ(logy)

In each training step (i), weights (Wi) are updated according
to the Stochastic Gradient Descent (SGD) [39], [40] on the
cross-entropy loss (L) with adjustable batch size, momentum
(µ) and learning rate (ε), where ∂L′

∂W ′
i

represent the gradient
from the previous step, ∂L

∂Wi
represents the current gradient:

Wi ←Wi + µ
∂L′

∂W ′
i

− ε ∂L
∂Wi

After each epoch (input size/batch size steps), the Accu-
racy and Loss of the model’s performance on validation sets
are calculated and sent back to the VR headset, together with
the new weights (Wi) among all neurons.

V. DISCUSSION AND FUTURE WORK

Our preliminary implementation and exploration with
AIive point out several promising future directions: (1) AIive
may potentially help users learn and understand neural
networks’ training concepts. Therefore, we plan to improve
the system and conduct comprehensive studies to evaluate
its educational benefits; (2) Our system only supports simple
neural networks due to the limited computing power of VR
systems. Modern deep learning models typically consist of
tens or hundreds of thousands of neurons [41], it would be
interesting to investigate suitable designs for users to interact
with a larger number of neurons in VR environments; (3)
Since prior work has found different sounds could evoke
different emotional states of the listener [42], it is interesting
to explore how different sonification in terms of timbres,
pitches, and complexity would affect the user experience.

VI. CONCLUSION

This paper presents AIive, an interactive representation
that brings AI “alive”, it leverages visual and auditory
feedback to provide an artistic and intuitive way to interact
with AI. Since the system does not rely on numerical
values or scientific graphs, it could potentially reach a broad
audience. While AIive is still an early implementation, we
hope to share the core idea of representing AI through the
combination of 3D visualizations, sonification, and direct
manipulation in VR to the broader community. We look for-
ward to stimulating interesting conversations and to eliciting
useful feedback for our future development on AIive.
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