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Stable Fluids

Jos Stam
Alias|wavefront 
Seattle, USA

In this talk I will present some research I have been doing over the last four 
years on modeling fluids at Alias|wavefront.

Note on the notes. I typed these notes in one session as if I was giving the talk. 
Usually the talk takes about one hour. I haven’t corrected the grammar at all so 
it is very informal, but hey this is a talk not a paper.

I have given this talk at the following places: University of Washington (May 
2000), SIGGRAPH course in New Orleans (July 2000), INRIA Rocquencourt, 
(January 2001), Gamer Seminar at SFO (January 2001), IMA Workshop on 
Graphics in Minneapolis (May 2001), invited talk at the Spanish Conference 
on Computer Graphics in Girona (July 2001), SIGGRAPH course in LA 
(August 2001), invited talk at the Eurographics Workshop on Simulation and 
Animation in Manchester (September 2001), INRIA Grenoble (September 
2001).
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Fluids in Computer Graphics

• Fast.
• Looks good.
• Easy to code.

The main goal in computer graphics is to have fluids that are both fast and 
look convincing. Ideally we want a user to be able to interact in real-time with 
a virtual fluid. In this manner effects can be orchestrated more rapidly. Real 
time performance is also important in games, for example. In addition I like 
solvers that aren’t too hard to code. Later in this talk I will show you that a 
version of my solver can be coded in roughly 60 lines of C code.
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Fluid Mechanics

• Natural framework for fluid modeling
Full Navier-Stokes Equations

• Has a long history
reuse code/algorithms

• Equations are hard to solve
 non-linear

To achieve these goals we can do whatever we want. Historically fluids in 
computer graphics have been modeled using a combination of simple 
primitives and the clever usage of texture maps. This is fine, but the dynamics 
of fluids are very hard to capture that way, and I am speaking from experience. 
A more natural way to model fluids is to use the physical equations that 
describe their motion. These equations are known as the Navier-Stokes 
equations and have been around for quite some time now. So potentially we 
can reuse the abundant literature in physics and engineering. Of course the 
reason that there are so many articles published in this area is that these 
equations are very hard to solve because they are non-linear. 
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Previous Work (computer graphics)

Two dimensions:
•Yaeger & Upson 86  + Gamito et al. 95     (vortex blobs)

•Chen et al. 97     (explicit in time, finite differences)

Three-dimensions:
•Foster & Metaxas 97    (explicit in time, finite differences)

unstable

Inaccurate schemes can be useful

It is therefore not surprising that so little work has focused on solving these 
equations directly in computer graphics. Why should we be able to solve these 
equations if the experts at NASA can’t ? But there has been some work. The 
early techniques were mostly restricted to 2D and used techniques such as 
vortex blobs that work mainly in 2D. The most important previous work, at 
least to me, was the paper by Foster and Metaxas. They clearly showed that 
very convincing flows could be obtained even on coarse grids. Their technique 
is also quite easy to implement. Unfortunately it is not fast. The problem is 
that they use explicit scheme which become unstable for large time steps or 
large velocities.
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Main Contribution 

Stable Navier-Stokes solver

Any time step can be used

Bigger time steps = faster simulations

NOT accurate

So the motivation for this work was to extend Foster and Metaxas’ work and 
make the solver stable for any time step. Large time steps means faster 
simulation. In fact you can make them as fast as you like. They might look 
strange but the simulation will not blow up. Of course the technique cannot be 
claimed to be accurate. But in graphics if it looks good it is good. And I will 
let you be the judge whether my simulations look good or not when I give the 
demos in a moment.
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Application 
Use velocity to move densities:

There are of course many applications for a fluid solver. In this talk I will use 
the fluid solver to move densities like smoke around in an environment. Here I 
show two snapshots from my interactive solver. The one on the left is from the 
2D solver. The velocity field is shown in red and the density naturally follows 
the field. On the right is an example in 3D of a sphere interacting with the 
smoke density.
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Application 
Use velocity to move densities:

While ( simulating )
Get force from UI
Get density source from UI
Update velocity
Update density
Display density

The main structure of my solver is as follows. It is basically a single while 
loop. First I get some forces from the User Interface. In 2D these can be 
related to the movement of the mouse for example. Then I read in sources of 
densities from the UI. Then I update the velocity and the density using the 
solver and finally I display the density.
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Equations 

+ velocity should conserve mass

Equations very similar

To achieve this we need the physical equations for both the evolution of the 
density and the velocity. Here they are. What is immediately apparent is that 
these two equations look a lot the same. This should be obvious even to 
someone who has never seen these equations before. The top equation 
describes the evolution of the density denoted by rho. The velocity is denoted 
by the boldface vector u. The evolution of the velocity is given by the second 
equation which are the Navier-Stokes equations. The first equation is linear in 
rho and is much easier to solve than the second equation which is non-linear. 
The non-linear term is the second term on the right hand side where u appears 
twice. This term makes these equations hard to solve. Historically I first 
worked on a solver for the simpler equation and then applied to the harder 
equation. So in this talk I will first explain to you how to solve the first 
equation and then I will show you that the exact same techniques can be used 
to solve the second equation.
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Equations 

Evolution of density (assume velocity known)

Over a time step...

The first equation tells us how the density evolves over time, that’s what the 
symbol on the left means. And the change is due to three causes which 
correspond to the three terms on the right hand side of the equation.
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Equations 

Evolution of density (assume velocity known)

Density changes in the direction of the flow

The first time says that the density should follow the velocity field. This makes 
sense since if I blow on smoke smoke it will naturally follow the direction of 
the wind field.
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Equations 

Evolution of density (assume velocity known)

Density diffuses over time

The second term says that the density may diffuse at a rate kappa.



12

Equations 

Evolution of density (assume velocity known)

Increases due to sources from the UI

And finally the last term says that the density should increase due to external 
source. As I said before these sources are provided by the user through a 
suitable user interface.
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Algorithm
Subdivide space into voxels

Velocity + density defined in the center of each voxel

Ok so how do we solve these equations. Well first we discretize the entire 
space into identical voxels with the density defined at the center of each voxel. 
In this talk I will present the 2D case just so everything is easier to visualize. 
However, nothing I say will be restricted to 2D. Everything I say can be easily 
extended to 3D by adding another index and or another for loop.
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Algorithm

add source         diffuse              move

The main structure of the solver follows that of the equation. We first start 
with an initial grid of densities which is typically empty. Then we update this 
grid in three steps. Each step correspond to one of the terms of the equation. 
First we add the sources to the grid. This is really easy. In my implementation 
the sources are provided by a grid. So all I have to do is multiply this grid by 
the time step and add them to the density grid. Let me now explain how to 
solve for the diffusion step.



15

Diffusing Densities

dt

Dn Dn+1

In this step we want to account for the effects of diffusion. This is shown in 
this slide. On the left is the density grid before diffusion and on the right after 
diffusion. 
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Exchange of density between neighbors

Diffusing Densities

The basic idea is to look at the exchange of density between immediate 
neighbors only. They are highlighted here in yellow for the cell in the center.
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Diffusing Densities

Exchange of density between neighbors

We assume that density is exchange out and into the cell through the adjacent 
faces (edges in 2D).
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Diffusing Densities

Change = density flux in - density flux out
= k dt ( neighbor - center ) / h2

h

For a single face (edge) the exchange is equal to the density of flux coming in 
minus the density flux coming out. This is simply the difference in densities 
multiplied by the time step, the diffusion rate kappa and divided by the grid 
spacing squared. So the flux is higher for large time steps, large diffusion rate 
or small grid spacings.
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Diffusing Densities

Dn+1i,j = Dn i,j + k dt (Dn i-1,j + Dn i+1,j + Dn i,j-1 + Dn i,j+1 - 4Dn i,j)/h2

i-1,j

i,j-1

i,j

i,j+1

i+1,j

By summing up the fluxes for all the faces we end up with the following 
update rule. This is really easy to code simply add two for loops around this 
equation and you are done. Unfortunately it doesn’t work.
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Diffusing Densities

Unstable when     k dt / h2 > 1/2

The reason it doesn’t work is that the it can become unstable when the 
diffusion rate is too high, time step too large or grid spacing too small. The 
problem is that this method breaks down when the density propagates further 
than just between neighbors.
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Diffusing Densities

- dt

Dn Dn+1

Find densities which when diffused backward
in time give the original densities.

So we have to consider an alternative. The alternative is to use implicit 
techniques. Intuitively we look for the densities which when diffuse backward 
in time give us the densities that we currently have. Implicit techniques always 
work this way by looking back in time.
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Diffusing Densities
Linear system:

Dn+1i,j – k dt (Dn+1i-1,j+Dn+1i+1,j+Dn+1i,j-1+Dn+1 i,j+1-4Dn+1 i,j)/h2 = Dni,j

A x = b

A can be huge but is sparse

-> requires fast linear solver

So now we can rewrite our update rule with the roles of Dn and Dn plus one 
exchanged and the time step reversed. The problem here is that all the terms 
on the left hand side are unknown. So we end up with a linear system that we 
have to solve. This seems like a crazy idea, the unstable solution is so simple 
and now we have to solve an entire system. Actually this isn’t all that bad. 
First the system is sparse and many fast solvers exist. Also in practice the cost 
of solving the system over a large time step is much more effective than taking 
many tiny steps with a cheap unstable solver. 
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Diffusing Densities
Linear solvers:

Gaussian elimination

Jacobi/SOR relaxation

FFT/cyclical reduction

Conjugate gradient

Multi-grid

Name Cost

N3

N2

N logN

N1.5

N

Comments

Use only for very small N (test code)

Use when no internal boundaries

Use when internal boundaries

Slower than FFT in practice. Hard to code
when internal boundaries present

Easy to code but slow

So what kind of linear solvers are out there. The most naïve solver is to use 
Gaussian elimination. These solvers are only good for small or dense matrices. 
But they are available in many standard libraries and are useful to debug the 
solver code for small grids. The easiest solver to implement is simple 
relaxation such as Jacobi or Gauss-Seidel. The only problem is that they do not 
converge all that fast. I would start with this solver and later when the code is 
up and running switch to a more sophisticated technique such as the FFT based 
ones or the conjugate gradient. Both of these techniques converge much faster 
but are a little harder to implement. The FFT based techniques are really fast 
but only work when there are no internal boundaries, like an object in the 
fluid. These solvers are available in FISHPAK from netlib.org. It’s in Fortran 
but you can convert it to c using the f2c tool also available at netlib.org. When 
objects are present in the flow I recommend using the conjugate gradient 
technique. It is fairly easy to code. In fact you can find some nice C++ 
templates (which I converted to C code) from the IML++ library at NIST. 
Finally, multigrid solvers are theoretically optimal. Although they are order N, 
the constant is quite high. And unless you consider huge grids both FISHPAK 
and the conjugate gradient will work much faster. Also multigrid methods are 
a total pain to code. Especially when objects are present or you consider grid 
sizes which are not powers of two.
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Algorithm

add source         diffuse              move

So this takes care of the diffusion step. Let’s now turn to the last step in 
updating the density.
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Moving Densities

Velocity known

dt

In this step we assume that the velocity is known. Over a time step we want to 
move the density along the velocity field.
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Moving Densities
Finite Differences: transfer only between 
neighbors

Unstable when

As for the diffusion step we can look at direct neighbors only and consider the 
fluxes. In this case the fluxes will be biased by the direction of the velocity 
field. The naïve implementation of this scheme again results in instabilities. 
The problem again is when the transfer is between neighbors that are more 
than one cell removed. This happened when either the velocity is too large, the 
time step too big or the grid spacing too small. We could use a stable implicit 
method, but the problem here is that the resulting linear system has a non-
symmetrical matrix with varying constants. So the Conjugate Gradient solver 
cannot be used. Of course there are variants of the conjugate gradient such 
BiCGSTAB2 but they can become unstable when the system is ill-conditioned. 
However, it turns out there is a really simple technique that is stable and can 
solve for this step.
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Moving Densities
Easy if density defined on particles

Any time step ok

The basic idea is as follows. If the density was sampled on particles then this 
step would be trivial to compute: simply move the particles along the field 
using a particle tracer. Of course the problem is that we then have to use a 
particle solver for the other terms as well. And no good techniques are known 
to me for doing this. So we still want to keep the grids around.
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Moving Densities
Key Idea: combine particles and grids

Our idea is to find the positions of the particles that after one time step end up 
exactly at the grid centers.
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Moving Densities
Trace particle backwards in time

To find these particles we simply trace back each voxel center of the grid 
backwards through the field.
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Moving Densities
Determine four neighbors

Doing this we will end up somewhere else in the grid. We first locate the four 
closest cells to the point.
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Moving Densities
Interpolate the density at new location

And then we interpolate the density from these cells…
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Moving Densities
Set interpolated density at grid location

Requires two grids

…  and set the interpolated value as the new density of the departure cell. For 
this to work we require two grids. One that contains the density values of the 
previous time step and one that will contain the new interpolated values.
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Moving Densities
This scheme is unconditionally stable:

density is always bounded

The important property of this technique is that it is unconditionally stable: no 
matter how big the time step this technique will not blow up. This is why. 
Since we have a regular grid which is a tensor product of two one dimensional 
grids I only have to prove it for 1D data. Since the new data is a linear 
interpolation of previous data we have that the new maximum of the new 
densities is always bounded by the maximum density of the old values. So the 
density is always bounded no matter how big the time step and therefore will 
never blow up and become unstable.
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Computing Velocities

Now let’s go back to the computation of the velocity.
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Computing Velocities
Use same algorithms as for density

Velocity is moved by itself

As I said earlier the equation I just showed you how to solve for the density 
looks a lot like the equation for the velocity. The velocity also has a 
“diffusion” term which accounts for the effects of viscosity. The higher the 
viscosity constant nu, the more the velocity field will be smooth, resulting in 
viscous-like fluids. In this case we have to solve two diffusion equations in 2D 
and three equations in 3D, one for each component of the velocity field. The 
last term is the force term and can also be accounted similarly as for the 
sources in the density solver. Finally the first term is the most interesting one. 
It looks just like the corresponding term for the density, except that the 
velocity appears twice making it non-linear. In the case of the density this term 
states that the density should follow the velocity field. So we can interpret this 
term as saying that the “velocity should move along itself”. This might sound 
weird at first but this is how we can interpret it. And in fact we can blindly 
apply the same algorithm we used for the density. At first I never expected this 
to work and I was lucky that my first implementation didn’t have bugs, if not I 
would have thought, Ah another crazy idea that doesn’t work. Instead I was 
amazed that it worked so well.
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Moving Velocity
Trace particle backwards in time

Se here we go. Again we need two grids for the velocity. One that contains the 
old values and one that contains the new interpolated values. As before we 
trace each grid point backwards in time using the old velocities.
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Moving Velocity 
Interpolate the velocity at new location

Doing this we end up somewhere else in the grid. And as for the density we 
interpolate a new velocity at that location from the neighboring grid cells.
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Moving Velocity
Set interpolated velocity at grid location

Requires two grids

And then we set the new velocity to the interpolated one. Again this method is 
stable just like for the density solver. I learned from Ron Fedkiw that this 
technique was first invented in 1952 by Courant, Rees and Isaacson and has 
been rediscovered by many researchers in different fields. It is best known as a 
semi-Lagrangian technique. 
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Conservation of Mass

There is still one step we have to enforce before we are done and that is that 
the fluid should conserve mass.
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Conservation of Mass

Flow into cell = Flow out of the cell
Ui+1,j - Ui-1,j  +  Vi,j+1 - Vi,j-1 = 0  not

What this means is that we want the flow into a cell to be equal to flow out of 
it. This results in the constraint shown on the slide. In practice after the three 
previous steps this is never the case. So the idea is to correct the situation in a 
final step.
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Conservation of Mass

= +

Our field            =     mass conserving +       gradient

Hodge decomposition

To to this we use a mathematical result know as the Hodge decomposition of a 
vector field. This result states that every vector field such as the one shown on 
the left is the sum of a mass conserving field and a gradient field. The mass 
conserving field is exactly the sort of vector field we want as it has nice 
vortices which will result in swirling looking flows. The gradient field on the 
other hand is the worst possible case: at every point the flow either is all 
inward or outward. The gradient field can be visualized as being the slope 
function of some height field, it is defined entirely be a single scalar field.
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Conservation of Mass

= -

Mass conserving  =          our field         - gradient

To get a mass conserving field from an arbitrary vector field we simply 
subtract the gradient part from it. This requires us to find the scalar function 
that defines the gradient field.
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Conservation of Mass
Scalar field satisfies a Poisson Equation:

Pi+1,j+Pi-1,j+Pi,j+1+Pi,j-1 - 4 Pi,j =  (Ui+1,j - Ui-1,j  +  Vi,j+1 - Vi,j-1) h

Linear system

It turns out that this gradient field can be computed by solving the following 
Poisson equation. Again we have a sparse symmetrical linear system that we 
can solve using any of the solvers that I mentioned when talking about the 
diffusion step. Typically conjugate gradient is a good idea with a good 
preconditioner, Jacobi did the job for me.
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Summary

UpdateVelocity(U1,U0,F,visc,dt)
AddForce(U1,U0,F,dt)
Diffuse(U0,U1,visc,dt)
Move(U1,U0,U0,dt)
ConserveMass(U1,dt)

Very easy to code. Only need:
Particle tracer + grid interpolator
Linear solver (FISHPAK or CG)

So in summary here is all you need to write a fluid solver: a linear solver for 
the diffusion and the mass conservation step and a good particle tracer and grid 
interpolator for the self-advection step.
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Show 2D demo

At this point I show a 2D demo that demonstrates each step of the algorithms 
just described.
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Liquid Textures

Animate texture coordinates

(0,0)

(1,1)

A nice way to add detail to the flow is through texture maps. This is a popular 
way to add visual detail in computer graphics. We assume that our fluid 
density has initially the texture coordinates shown on the slide. (0,0) in the 
lower left corner and (1,1) in the upper right corner.
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Liquid Textures
Treat texture coordinates as densities

U-coordinate                  V-coordinate

Now we can interpret the texture coordinates as two densities which initially 
are just equal to the ramps shown here. Then the idea is to feed these densities 
to the solver and let them evolve according to the velocity field. This will give 
the impression that the texture moves with the flow. So in essence we are 
simulating three densities: the density, the u coordinate and the v coordinate.
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Liquid Textures

(0.5,0.5)

(0.2,0.52)

Here is an example. The point in the center of the texture initially corresponds 
to the center point in the fluid domain. However, when these texture 
coordinates are animated using the solver the coordinate in the center now 
point to a lower point in the texture map (when applying a force field upward). 
This will give the impression that the texture flows upward. Very simple trick 
that is pretty effective.
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Show 2D texture demo

At this point I show some real time demos where I move these textures 
around. I also show a “wild paint” program where drops of different color fall 
down due to the effects of gravity.
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Simple Stable Fluid Solver

Periodic boundaries

At the beginning of my talk I said that I could implement my solver in roughly 
60 lines of code. You can do this in the case when the fluid is periodic. Which 
means that the flow is continuous across adjacent boundaries. So for example 
you can tile a single domain to the entire space. Like some funky wallpaper 
with arrows on them that also vary over time. These flows of course do not 
occur exactly in Nature, but they can be useful in computer graphics. For 
example it allows you to have field defined everywhere in space. So you can 
model some ambient turbulence that way. In fact if you throw some particles 
in the field, you will barely notice that the field is periodic. In fact I did 
something quite similar in my 1993 SIGGRAPH paper with Eugene Fiume.
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Simple Stable Fluid Solver
Fourier space

(0,0)

(1,1)

(0,0)

(N/2,N/2)

(-N/2,-N/2)

(x,y)

(k,l)

(U(x,y),V(x,y))                                             (u(k,l),v(k,l))

Because the field is periodic we can use the Fourier transform. The Fourier 
transform of a vector field is also a vector field. Instead of assigning a vector 
to each point in space the Fourier transform assigns a vector for each wave 
number (k,l). The wave numbers have values between –N/2 and N/2, where N 
is the resolution of the grid. The reason that this is neat is that some operations 
are very simple to do in the Fourier space, while others are more easily done in 
the spatial domain.
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Simple Stable Fluid Solver

diffusion = low pass filter: exp(-(k2 +l2)? ? t)
mass conservation = velocity perpendicular to the fourier directions

More specifically both the diffusion step (viscosity remember) and the mass 
conserving step are very easy to compute in Fourier domain. The effect of 
viscosity is simply a low pass filter which dampens the higher frequencies. So 
the arrows get tinier as you move away from the center of the Fourier space as 
shown on the slide. In the Fourier domain a mass conserving field has the nice 
property that the velocity is always perpendicular to the wave number. So all 
the vectors are perpendicular to the circles centered at the origin. This is 
shown on the slide. The mathematical reason that this is the case is that 
incompressibility equation which reads Nabla dot u, becomes wave number 
dot u in the Frequency domain. A dot product is zero if an d only if the vector 
are perpendicular. So what all this says is that the velocity field has a very 
simple structure in the Fourier domain. A fact that is not widely know I think. 
The self-advection term is best solved in the spatial domain using the simple 
semi-Lagrangian style technique, where you trace each point back and do the 
interpolation. So is the addition of external forces which are usually localized 
in space. Although to model turbulence it might be a better idea to do it in 
frequency domain using a Kolmogoroff spectrum.
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void stable_solve ( int n, float * u, float * v, float * u0, float * v0,
float visc, float dt )
{

float x, y, x0, y0, f, r, U[2], V[2], s, t;
int i, j, i0, j0, i1, j1;

for ( i=0 ; i<n*n ; i++ )
{

u[i] += dt*u0[i]; u0[i] = u[i];
v[i] += dt*v0[i]; v0[i] = v[i];

}

for ( x=0.5/n,i=0 ; i<n ; i++,x+=1.0/n )
{

for ( y=0.5/n,j=0 ; j<n ; j++,y+=1.0/n )
{

x0 = n*(x-dt*u0[i+n*j])-0.5; y0 = n*(y-dt*v0[i+n*j])-0.5;
i0 = floor(x0); s = x0 -i0; i0 = (n+(i0%n))%n; i1 = (i0+1)%n;
j0 = floor(y0); t = y0 -j0; j0 = (n+(j0%n))%n; j1 = (j0+1)%n;
u[i+n*j] = (1-s)*((1-t)*u0[i0+n*j0]+t*u0[i0+n*j1])+

s *((1-t)*u0[i1+n*j0]+t*u0[i1+n*j1]);
v[i+n*j] = (1-s)*((1-t)*v0[i0+n*j0]+t*v0[i0+n*j1])+

s *((1-t)*v0[i1+n*j0]+t*v0[i1+n*j1]);
}

}

for ( i=0 ; i<n ; i++ )
for ( j=0 ; j<n ; j++ )

{ u0[i+(n+2)*j] = u[i+n*j]; v0[i+(n+2)*j] = v[i+n*j]; }

FFT(1,n,u0); FFT(1,n,v0);

for ( i=0 ; i<=n ; i+=2 )
{

x = 0.5*i;
for ( j=0 ; j<n ; j++ )
{

y = j<=n/2 ? j : j -n;
r = x*x+y*y;
if ( r==0.0 ) continue;
f = exp(-r*dt*visc);
U[0] = u0[i  +(n+2)*j]; V[0] = v0[i  +(n+2)*j];
U[1] = u0[i+1+(n+2)*j]; V[1] = v0[i+1+(n+2)*j];
u0[i  +(n+2)*j] = f*( (1 -x*x/r)*U[0]     -x*y/r *V[0] );
u0[i+1+(n+2)*j] = f*( (1 -x*x/r)*U[1]     -x*y/r *V[1] );
v0[i+  (n+2)*j] = f*(   -y*x/r *U[0] + (1-y*y/r)*V[0] );
v0[i+1+(n+2)*j] = f*(   -y*x/r *U[1] + (1-y*y/r)*V[1] );

}
}

FFT(-1,n,u0); FFT(-1,n,v0);

f = 1.0/(n*n);
for ( i=0 ; i<n ; i++ )

for ( j=0 ; j<n ; j++ )
{ u[i+n*j] = f*u0[i+(n+2)*j]; v[i+n*j] = f*v0[i+(n+2)*j ]; }

return;
}

60 lines of (readable) C code

Simple Stable Fluid Solver

So here is the code. All it assumes is that you have a good FFT solver. The one 
I use is called the Fastest Fourier Transform in the West (FFTW) which you 
can get from MIT for free. I will now go over the different parts of the code. 
The input is simply the velocity of the previous time step (u,v), the forces 
(u0,v0), the viscosity visc and the time step dt.
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void stable_solve ( int n, float * u, float * v, float * u0, float * v0,
float visc, float dt )
{

float x, y, x0, y0, f, r, U[2], V[2], s, t;
int i, j, i0, j0, i1, j1;

for ( i=0 ; i<n*n ; i++ )
{

u[i] += dt*u0[i]; u0[i] = u[i];
v[i] += dt*v0[i]; v0[i] = v[i];

}

for ( x=0.5/n,i=0 ; i<n ; i++,x+=1.0/n )
{

for ( y=0.5/n,j=0 ; j<n ; j++,y+=1.0/n )
{

x0 = n*(x-dt*u0[i+n*j])-0.5; y0 = n*(y-dt*v0[i+n*j])-0.5;
i0 = floor(x0); s = x0 -i0; i0 = (n+(i0%n))%n; i1 = (i0+1)%n;
j0 = floor(y0); t = y0 -j0; j0 = (n+(j0%n))%n; j1 = (j0+1)%n;
u[i+n*j] = (1-s)*((1-t)*u0[i0+n*j0]+t*u0[i0+n*j1])+

s *((1-t)*u0[i1+n*j0]+t*u0[i1+n*j1]);
v[i+n*j] = (1-s)*((1-t)*v0[i0+n*j0]+t*v0[i0+n*j1])+

s *((1-t)*v0[i1+n*j0]+t*v0[i1+n*j1]);
}

}

for ( i=0 ; i<n ; i++ )
for ( j=0 ; j<n ; j++ )

{ u0[i+(n+2)*j] = u[i+n*j]; v0[i+(n+2)*j] = v[i+n*j]; }

FFT(1,n,u0); FFT(1,n,v0);

for ( i=0 ; i<=n ; i+=2 )
{

x = 0.5*i;
for ( j=0 ; j<n ; j++ )
{

y = j<=n/2 ? j : j -n;
r = x*x+y*y;
if ( r==0.0 ) continue;
f = exp(-r*dt*visc);
U[0] = u0[i  +(n+2)*j]; V[0] = v0[i  +(n+2)*j];
U[1] = u0[i+1+(n+2)*j]; V[1] = v0[i+1+(n+2)*j];
u0[i  +(n+2)*j] = f*( (1 -x*x/r)*U[0]     -x*y/r *V[0] );
u0[i+1+(n+2)*j] = f*( (1 -x*x/r)*U[1]     -x*y/r *V[1] );
v0[i+  (n+2)*j] = f*(   -y*x/r *U[0] + (1-y*y/r)*V[0] );
v0[i+1+(n+2)*j] = f*(   -y*x/r *U[1] + (1-y*y/r)*V[1] );

}
}

FFT(-1,n,u0); FFT(-1,n,v0);

f = 1.0/(n*n);
for ( i=0 ; i<n ; i++ )

for ( j=0 ; j<n ; j++ )
{ u[i+n*j] = f*u0[i+(n+2)*j]; v[i+n*j] = f*v0[i+(n+2)*j ]; }

return;
}

Add forces

Simple Stable Fluid Solver

First we simply add the force grid multiplied by the time step to the velocity 
field.
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void stable_solve ( int n, float * u, float * v, float * u0, float * v0,
float visc, float dt )
{

float x, y, x0, y0, f, r, U[2], V[2], s, t;
int i, j, i0, j0, i1, j1;

for ( i=0 ; i<n*n ; i++ )
{

u[i] += dt*u0[i]; u0[i] = u[i];
v[i] += dt*v0[i]; v0[i] = v[i];

}

for ( x=0.5/n,i=0 ; i<n ; i++,x+=1.0/n )
{

for ( y=0.5/n,j=0 ; j<n ; j++,y+=1.0/n )
{

x0 = n*(x-dt*u0[i+n*j])-0.5; y0 = n*(y-dt*v0[i+n*j])-0.5;
i0 = floor(x0); s = x0 -i0; i0 = (n+(i0%n))%n; i1 = (i0+1)%n;
j0 = floor(y0); t = y0 -j0; j0 = (n+(j0%n))%n; j1 = (j0+1)%n;
u[i+n*j] = (1-s)*((1-t)*u0[i0+n*j0]+t*u0[i0+n*j1])+

s *((1-t)*u0[i1+n*j0]+t*u0[i1+n*j1]);
v[i+n*j] = (1-s)*((1-t)*v0[i0+n*j0]+t*v0[i0+n*j1])+

s *((1-t)*v0[i1+n*j0]+t*v0[i1+n*j1]);
}

}

for ( i=0 ; i<n ; i++ )
for ( j=0 ; j<n ; j++ )

{ u0[i+(n+2)*j] = u[i+n*j]; v0[i+(n+2)*j] = v[i+n*j]; }

FFT(1,n,u0); FFT(1,n,v0);

for ( i=0 ; i<=n ; i+=2 )
{

x = 0.5*i;
for ( j=0 ; j<n ; j++ )
{

y = j<=n/2 ? j : j -n;
r = x*x+y*y;
if ( r==0.0 ) continue;
f = exp(-r*dt*visc);
U[0] = u0[i  +(n+2)*j]; V[0] = v0[i  +(n+2)*j];
U[1] = u0[i+1+(n+2)*j]; V[1] = v0[i+1+(n+2)*j];
u0[i  +(n+2)*j] = f*( (1 -x*x/r)*U[0]     -x*y/r *V[0] );
u0[i+1+(n+2)*j] = f*( (1 -x*x/r)*U[1]     -x*y/r *V[1] );
v0[i+  (n+2)*j] = f*(   -y*x/r *U[0] + (1-y*y/r)*V[0] );
v0[i+1+(n+2)*j] = f*(   -y*x/r *U[1] + (1-y*y/r)*V[1] );

}
}

FFT(-1,n,u0); FFT(-1,n,v0);

f = 1.0/(n*n);
for ( i=0 ; i<n ; i++ )

for ( j=0 ; j<n ; j++ )
{ u[i+n*j] = f*u0[i+(n+2)*j]; v[i+n*j] = f*v0[i+(n+2)*j ]; }

return;
}

Move velocity

Simple Stable Fluid Solver

Then we do the self-advection step. Again we trace each voxel center back in 
time. The interpolation is quite straightforward since we do not have to worry 
about boundaries. A particle that exits one boundary reenters the grid from the 
opposite boundary. This can easily be implemented using couple mod 
operations in C. See the code. 
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void stable_solve ( int n, float * u, float * v, float * u0, float * v0,
float visc, float dt )
{

float x, y, x0, y0, f, r, U[2], V[2], s, t;
int i, j, i0, j0, i1, j1;

for ( i=0 ; i<n*n ; i++ )
{

u[i] += dt*u0[i]; u0[i] = u[i];
v[i] += dt*v0[i]; v0[i] = v[i];

}

for ( x=0.5/n,i=0 ; i<n ; i++,x+=1.0/n )
{

for ( y=0.5/n,j=0 ; j<n ; j++,y+=1.0/n )
{

x0 = n*(x-dt*u0[i+n*j])-0.5; y0 = n*(y-dt*v0[i+n*j])-0.5;
i0 = floor(x0); s = x0 -i0; i0 = (n+(i0%n))%n; i1 = (i0+1)%n;
j0 = floor(y0); t = y0 -j0; j0 = (n+(j0%n))%n; j1 = (j0+1)%n;
u[i+n*j] = (1-s)*((1-t)*u0[i0+n*j0]+t*u0[i0+n*j1])+

s *((1-t)*u0[i1+n*j0]+t*u0[i1+n*j1]);
v[i+n*j] = (1-s)*((1-t)*v0[i0+n*j0]+t*v0[i0+n*j1])+

s *((1-t)*v0[i1+n*j0]+t*v0[i1+n*j1]);
}

}

for ( i=0 ; i<n ; i++ )
for ( j=0 ; j<n ; j++ )

{ u0[i+(n+2)*j] = u[i+n*j]; v0[i+(n+2)*j] = v[i+n*j]; }

FFT(1,n,u0); FFT(1,n,v0);

for ( i=0 ; i<=n ; i+=2 )
{

x = 0.5*i;
for ( j=0 ; j<n ; j++ )
{

y = j<=n/2 ? j : j -n;
r = x*x+y*y;
if ( r==0.0 ) continue;
f = exp(-r*dt*visc);
U[0] = u0[i  +(n+2)*j]; V[0] = v0[i  +(n+2)*j];
U[1] = u0[i+1+(n+2)*j]; V[1] = v0[i+1+(n+2)*j];
u0[i  +(n+2)*j] = f*( (1 -x*x/r)*U[0]     -x*y/r *V[0] );
u0[i+1+(n+2)*j] = f*( (1 -x*x/r)*U[1]     -x*y/r *V[1] );
v0[i+  (n+2)*j] = f*(   -y*x/r *U[0] + (1-y*y/r)*V[0] );
v0[i+1+(n+2)*j] = f*(   -y*x/r *U[1] + (1-y*y/r)*V[1] );

}
}

FFT(-1,n,u0); FFT(-1,n,v0);

f = 1.0/(n*n);
for ( i=0 ; i<n ; i++ )

for ( j=0 ; j<n ; j++ )
{ u[i+n*j] = f*u0[i+(n+2)*j]; v[i+n*j] = f*v0[i+(n+2)*j ]; }

return;
}

Diffuse + project

Simple Stable Fluid Solver

Next we transform our field to the Fourier domain where we do the diffusion 
and the mass conserving steps. The viscosity low pass filter depends on the 
wave number, the time step and the viscosity. The projection step is also very 
easy to implement. Notice that velocity values are complex numbers, however 
the storage is almost the same due to the symmetries of a Fourier transform of 
a real function. So in essence we only store the right half of the Fourier space. 
Another thing that is interesting is that the solver works in any dimension: 
simply add more arrays and for loops and the FFTW has a version for 
transforms in any dimensions. It is not clear to me what the applications would 
be of 4 or 5 dimensional fluid solver. Maybe the evolution of some set of 
parameters is governed by a Navier-Stokes Equation. The vector field in this 
case models the flow of change of these parameters. So I have a solution here 
that is looking for a problem. 
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Show 2D simple demo

Here I show a demo of the simple solver where I interact in real time with a 
velocity field and switch back and force between the spatial and the Fourier 
domain.
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3D Demos

Move 3D solid texture coordinates

Interactive Volume Rendering

As I said at the beginning of the talk, although everything was explained in a 
2D setting the algorithm easily extends to 3D by simply adding an extra index 
and extra for loops. One issue is however how we display the density since it is 
now a volume. For this we need a fast volume renderer.
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Volume Rendering

Here is what a 3D grid looks like.
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Volume Rendering

Render slices from front to back

We do the rendering in hardware by sampling the volume along slices and then 
rendering them from front to back as semi-transparent quads. The slices are 
chosen to be aligned with the main axis most aligned with the view. This 
makes the coding much easier. It results in small popping artifacts in some 
cases. So don’t use it in production but it allows someone to view the density 
in real-time. You can also self-shadow the volume by doing a shadow prepass 
from the light source and storing the accumulated transparencies. Essentially I 
use a 3D Bresenham with the origins at the center of the cells on the faces that 
are lit.
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Show 3D demo

I now show various 3D demos which still run in real time. Showing the new 
hardware density rendering with self-shadowing. I also show densities which 
are textured using 3D texture maps. The Octane and the new nVidia cards 
have them in hardware, but there are ways to fake them with 2D texture maps, 
and in fact I have it working on my Dell 1GHz PIII laptop with a GeForce2 
GO card in it. I also show some demos with boundaries where the smoke 
slides over them, etc. All this in real time of course.
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Defeating Dissipation

Work with

Ronald Fedkiw & Henrik Wann Jensen

Stanford University

I will now talk about some recent work with Ron Fedkiw and Henrik Wenn
Jensen both from Stanford University. As you could tell from the demos the 
motion is nice but tends to be dampened faster than actual flows. This is 
because to enforce stability additional damping is added to the flow. So the 
flows although they appear cool when stirred actually die out to fast. In this 
new work we address this problem and apply it specifically to smoke.
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Higher Order Interpolation

Use Hermite interpolation instead of 
Linear interpolation.

The first technique is to improve the interpolation that is used during the self-
advection step. We get higher accuracy with better interpolants such as the 
Hermite curve shown on the slide. The problem, however, is that these 
interpolants may under or overshoot the data. So we do not have the nice 
property anymore that the max of the new values is bounded by the max of the 
old values. And so potentially the simulation might blow up and we lose the 
nice property of stability.
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Higher Order Interpolation

Force interpolant to be monotonic to
avoid instabilities

To fix this problem we introduce some new splines which are guaranteed to 
not overshoot the data. The picture on left shows data interpolated with a 
standard Hermite spline. You can clearly see the overshoots and under shoots 
where the data isn’t smooth, this is a basic behavior of any high order 
interpolant. The curve on the right shows our new interpolation scheme. 
Notice how there no over or undershoots and that the curve is discontinuous 
where it should be. Our solver with this interpolation scheme is stable for any 
time step.
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Higher Order Interpolation

linear Hermite

Here are two animations where you can see the increase in precision using the 
new scheme. Of course the interpolation is more expensive, about 9 times 
more expensive than the linear interpolation. So the linear one is useful in pre-
production phase, to get the motion basically right. While the more expensive 
solver can be useful at later stages to refine the motion.
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Vorticity Confinement

So that’s one way of reducing the numerical dissipation of the basic Stable 
Fluids algorithm. The next technique is very cool. The basic idea is to reinject 
the energy that is dissipated back into the flow through a clever force field. 
Instead of looking at the velocity we will consider the vorticity field which is 
defined as the curl of the velocity. Again this is a vector field. In 2D this 
vector always points out of the fluid plane and the vorticity can be treated as a 
scalar field. On the slide I show the velocity field and the corresponding 
magnitude of the vorticity in red. Notice how the field is strongest where the 
rotation is largest. Vorticity is thus a measure of how much the flow rotates. 
Clearly for turbulent smoke we want the vorticity to be strong and localized. 
This will result in nice looking swirling smoke fields.
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Vorticity Confinement

Basic idea :Increase vorticity

John Steinhoff 1987 (Flow Analysis)

So the idea is to keep the vorticity alive using an external force. The basic idea 
is due to a brilliant insight from John Steinhoff that he had some ten years ago. 
John is a physicist who has his own company called Flow Analysis, he has 
many other cool ideas that are implemented in his commercial software. 
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Vorticity Confinement

Compute gradient

The first step in computing the confinement force, is to compute the gradient 
of the vorticity. So this field points inwards to the vortex center.
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Vorticity Confinement

Add force perpendicular

The next step is to add a force perpendicular to the gradient field. This will 
tend to keep the vortices alive and well localized.
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Show confinement demo

In this demo I do a side by side comparison of the solver with and without the 
confinement force. This is a real time demo and I display the vorticity field 
and also show how a density field has more detail with the confinement force 
added in. I also show some demos of a wind tunnel, in it you get the typical 
Karman vortex street pattern, this puts the Reynold’s number of these flows at 
roughly 200. I also show 3D demos with the vorticity confinement, with object 
interacting with smoke, such as spheres and cloth.
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High Quality Renderings

This is a high quality animation rendered using Jensen’s photon map.
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High Quality Renderings

Here is another one with a sphere
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Show demo

PocketPC demo

Finally the last demo is where I show a 2D solver that runs on my Pocket PC 
(Compaq iPaq H3600). I did all the rendering myself directly to screen space 
using the GAPI gamer interface for the Pocket PC. And I ported my entire 
solver to fixed point arithmetic since the CPU in the PocketPC (Intel
StrongARM) does not have hardware support for floats.
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Fixed point math:

PocketPC demo

8 bits         . 8 bits

#define freal short     // 16 bits

#define X1 (1<<8)
#define I2X(i) ((i)<<8)
#define X2I(x) ((x)>>8)
#define F2X(f) ((f)*X1)
#define X2F(x) ((float)(x)/(float)X1)
#define XM(x,y) ((freal)(((long)(x)*(long)(y))>>8))
#define XD(x,y) ((freal)(((long)(x))<<8)/(long)(y)))

x = a*(b/c)       x = XM(a,XD(b,c))       

In fixed point math all real are represented as 16 bit integers: 8 bit for the 
integer part and 8 for the fractional part. It is really easy to implement the 
equivalent operations for fixed point reals. All you have to do is define the 
following defines and use them instead of the usual operations. You have to be 
careful with certain algorithms that do not work well with fixed point due to 
underflows and overflows. For example the conjugate gradient fails miserably, 
so you are better off using a simple relaxation technique like Gauss-Seidel.
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Future Work
•Handle free boundaries (water)
•Parallel implementation (in progress)
•Adaptive grids (in progress)
•“Smarter” texture maps 

Here some of the stuff I am working on. I would like to have a real time 
simulation of water. This is harder as the boundary conditions change over 
time (at the water surface). I hope that I can reuse some of the ideas presented 
here and apply them to water. Also I would like to parallelize my code. Of 
course I do not have the hardware to test my ideas. That’s a problem. 
However, I was able to parallelize the code on my dual PIII at work. I simply 
feed the velcoity solver to one CPU and the density solver (+texture coord or 
temperature) to the second CPU, this gave some dramatic speedups. Also we 
are working on adaptive grids. The grid can be adapted to the region of 
interest. Imagine a thin trail of smoke, than it would be a waste to have a 
uniform grid for all spatial directions. Also I am looking into designing 
smarter texture maps to model things like pyroclastic flows. These flows are so 
highly detailed that they are beyond grid technology at this point, the same 
with clouds. So the idea is to add a smart texture map with billowing motion 
which is driven by a coarser simulation.

Thank you for your attention.

Any questions ?


