

Distant Freehand Pointing and Clicking
on Very Large, High Resolution Displays

Daniel Vogel, Ravin Balakrishnan
Department of Computer Science

University of Toronto
dvogel | ravin @dgp.toronto.edu

(a) (b) (c)

Figure 1. (a) very large (5m x 1.8m), high resolution (6144 x 2304 pixels) display; (b) visualization showing ambiguous posture
threshold warning; (c) the hand controls pointer position and makes “click” selection with finger or thumb.

ABSTRACT
We explore the design space of freehand pointing and
clicking interaction with very large high resolution displays
from a distance. Three techniques for gestural pointing and
two for clicking are developed and evaluated. In addition,
we present subtle auditory and visual feedback techniques to
compensate for the lack of kinesthetic feedback in freehand
interaction, and to promote learning and use of appropriate
postures.
Categories and Subject Descriptors: H.5.2 [User
Interfaces]: Interaction styles; I.3.6 [Methodology and
Techniques]: Interaction techniques.
General Terms: Design, Experimentation, Human Factors
Additional Keywords and Phrases: very large displays,
freehand gestures, whole hand interaction, pointing

INTRODUCTION
As displays increase in size and resolution while decreasing
in price we will soon have entire walls providing high
resolution visual output. These very large, high resolution
displays will allow users to work up close with detailed
information and also enable them to step back and
manipulate the contents of the entire display space.
There are some tasks that are best performed from a
distance: for example, sorting slides/photos/pages spread
over the large display, or presenting a large drawing to a
group while navigating/panning/highlighting. Because of
their size and architectural context, these displays can be
used in a more casual manner similar to a large physical

whiteboard or paste up design space. There are also
circumstances where users cannot easily approach the
display and can interact only from a distance. Consider a
central control room used to monitor large systems like a
railway, or a large display mounted out of reach in a public
place like an airport.
Direct manipulation through pointing and clicking remains
by far the dominant interaction paradigm in conventional
user interfaces. Although alternatives like gesture-based
interfaces have been explored, the self-revealing nature,
simplicity, and flexibility of the point and click metaphor is
hard to beat. When a display surface can sense touch,
selecting items by tapping with your finger or a pen is
immediately appealing, as it mimics real world interaction.
But what happens when we are farther away from the
display? Proposed solutions to distant point and click
interaction include using 3D input devices such as a flying
mouse or hand-held isometric input [12, 32], and laser
pointer-style devices [18, 20, 21]. However, relying on a
hand-held isometric or isotonic device can make the
transition from distant to close interaction awkward.
Although laser pointers can become “touch pens” when used
on the display surface, with “on again, off again” casual
interaction, a physical device must be acquired and released,
and may even become misplaced.
Our work investigates potential techniques for pointing and
clicking from a distance using only the human hand. This
eliminates issues with acquiring a physical input device, and
transitions very fluidly to up close touch screen interaction.
Although we use a commercial motion tracking system with
reflective markers on the hand for developing and evaluating
these techniques, computer vision is approaching robust,
real time tracking of bare hand postures and movement in
3D space [19], thus making bare hand interaction a realistic
possibility in the near future.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’05, October 23–27, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-59593-023-X/05/0010…$5.00.

33

DESIGN CHARACTERISTICS
Commonly available point and click input devices make
assumptions about the user’s spatial relationship to the
display. They assume the user is always near the display for
pen and touch screen input, or near a stationary horizontal
surface when using a mouse. With a very large, high
resolution display users will be manipulating detailed
information up close, and also stepping back to see and
manipulate the entire display from a distance. This physical
movement creates an interesting problem when determining
what input technique to use, as we can no longer assume a
reasonably fixed spatial relationship between the user and
display. The pointing device needs to move with us and be
instantly available to perform selections. Whatever it is, we
not only need to carry it, but may also need to hold it up
without the luxury of a desk to rest on. Thus, we are led to a
set of desirable characteristics for pointing and selection
devices suitable for very large, high resolution displays:
1) Accuracy: The device must be able to reliably select small
targets both from a distance and up close. Although the user
interface could be tailored to show only large targets and
make distant selection easier, this is not a realistic design
because it squanders the potential benefits of high resolution
up close interaction with the display. Also, considering that
most states require 20/40 corrected vision to receive a
driver’s license, most people can read an 11.6 mm symbol
from a distance of 4 m1 [17]. Thus even from a distance of
4m, a target size of 16 mm is quite reasonable.
2) Acquisition Speed: The more casual “on again, off again”
use of this type of large display means users will not
necessarily be interacting with it for extended periods of
time and may perform other activities in between
interactions with the display. Zhai [32] argues that a major
problem with 3D input devices operated from a distance is
device acquisition. A cursor controlled by such an input
device does not “stay put” when the device is physically
released, unlike a conventional mouse. Thus, the acquisition
and release of the pointing device should require minimal
effort and be instantaneous.
3) Pointing and Selection Speed: In spite of the large pixel
count and physical size of the display, when used from a
distance the device should be able to move to any location
on the display quickly with minimal or no clutching. The
selection (click) itself should also be easily executed.
4) Comfortable Use: As with any device, it should be easily
understood and simple to operate. Since we can no longer
assume proximity to the display or a desk, the device may be
operated with a single hand, possibly in free space. This may
introduce fatigue and strain if not carefully designed.
Hinckley et al. [9] caution that ergonomics for spatial
control are quite different than typing, and an emphasis
should be placed on techniques that avoid or reduce fatigue.

1 The min decipherable symbol height h given distance d:
h = 2 d tan(Θ /2), Θ = 5’ of arc for 20/20 vision. h = 5.81mm, or
11.64mm for 20/40 vision [17].

5) Smooth Transition Between Interaction Distances: The
pointing device should smoothly transition from up close
interaction, to interaction at a distance from the display. This
implies that the way in which the device is operated should
be consistent regardless of its distance from the display.
However, this consistency should also preserve direct touch
interaction when up close to the display since the
affordances of direct touching are so strong.

PREVIOUS WORK
Hand-held Indirect Pointing Devices
Proposed solutions to distant point and click interaction
include using 3D input devices such as isotonic flying mice
or hand-held isometric input [12, 32]. An isometric input
device doesn’t require the movement of the device itself in
space, which makes it much less tiring than a freely held
isotonic device. However, a hand-held isometric or isotonic
device makes the transition from distant to up close
interaction awkward because the device has no direct
mapping when used on a touch-enabled surface.

Laser Pointer-Style Devices
Various researchers have explored the use of laser pointers
as input devices for very large screen interaction [14, 15, 18,
20, 21, 23]. Laser pointer-style devices have the advantage
that they can become “touch pens” when used directly on the
display surface (i.e., the ray emanating from the device nears
zero length but is still usable). However, these ray casting
devices are notoriously inaccurate at a distance due to hand
jitter. Myers et al. [18] compared laser pointers to other
devices in pointing tasks. They found laser pointers
performed the worst, with at best 4 pixel selection accuracy
even after predictive filtering, but had good results with their
Semantic Snarfing technique. Oh and Stuerzlinger [20]
designed a computer controlled laser pointer, but their
experiments showed error rates around 40% when selecting
relatively large 40 pixel diameter targets. Olsen and Nielsen
[21] cleverly designed laser pointer interaction techniques
optimized to avoid hand jitter issues as much as possible.
Wilson and Pham [31] use relative movement of a wand to
control a motor actuated laser beam, and discussed the
merits of relative vs. absolute control. Parker et al. [22]
found that laser-pointer like devices were faster than direct
touch for large targets on a table top display and developed a
hybrid technique called TractorBeam.

Eye Tracking
Researchers have investigated eye gaze to control a cursor
and make selections in conventional interfaces [8] and on
large displays [2, 27]. However, problems with finding a
suitable selection “click” mechanism coupled with
involuntary saccade movements make it difficult to use eye
gaze effectively for precision pointing and selection. The
EyeWindows system [6] more appropriately uses eye gaze
for the relatively coarse pointing task of focusing a GUI
window. The MAGIC pointing technique [33] also
appropriately uses eye tracking for coarse contextual
pointing combined with a regular pointing device for
precision tasks within the context set by the eye gaze.

34

Body and Hand Tracking
Krueger [11] explored using the entire body as an input
device to control playful visualizations on a large display,
while advances in computer vision bring us closer to robust,
real time recognition of our body, hand, and finger positions
in 2D and 3D space [19]. Vogel and Balakrishnan [28] use
body position for coarse grained 1D pointing to provide
context for fine-grained actions, but 2D control is difficult
with this approach. Nickel and Stiefelhagen [19] explored
computer vision methods to find pointing direction
including head to hand line of sight, forearm orientation, and
head orientation. They found head orientation to be
important for determining pointing direction.

Direct Hand Pointing
Zhai [32] discussed using a hand for 6 DOF tasks and found
problems with rotation due to limited mobility of the wrist.
Hinckley et al. [9] surveyed different techniques for using
hands for spatial input, mostly concentrating on 6 DOF tasks
applied to virtual or augmented environments, but they only
discuss physical buttons mounted on gloves for selection or
clutching. Corradini and Cohen [4] created a free space
finger painting system by tracking the position of a finger
within a user defined absolute coordinate frame. They use
speech together with pointing gestures to issue commands
controlling the painting parameters. Bolt’s classic
“put-that-there” system [1] combines direct pointing using a
6 DOF magnetic tracker with voice commands to
disambiguate context.

Virtual Environments
Using the hand to select objects is common in virtual
environments (VE). Poupyrev and Ichikawa [26] gave an
overview of several hand based object manipulation
techniques including finger ray casting, although they use a
button for selection. In an experimental evaluation, they
found ray casting to be fast if accuracy is less important. An
earlier study by Bowman and Hodges [3] found that
naturalness is not always a necessary component of an
effective technique, for instance although the go-go reaching
technique is most natural, users preferred ray casting since it
was the least effort. Pierce et al. presented a two-handed
Voodoo doll technique to manipulate distant objects [25],
and, most relevant to our work, a family of image plane
selection techniques [24]. These allow selecting objects in a
3D world by considering the 2D view plane of the user.
Some, such as the “Head Crusher,” use finger gestures for a
selection mechanism.

Selection With the Hand
Most work discussed so far uses a physical button, dwell
time, or voice command for selection. Grossman et al. [7]
use a thumb trigger gesture for selection in their volumetric
display interaction techniques. Their prototype uses a
commercial high-precision motion tracking system, which
suggests one reason why selection gestures performed with
the fingers have been ignored until recently: their movement
is simply too subtle to be recognized accurately by other
tracking technologies.

POINTING AND CLICKING USING ONLY THE HAND
Touching a screen with the finger is an effective way to
interact when up close, so perhaps a bare hand can also be
used to point when away from the display. This eliminates
the problem of carrying a device, and provides a natural
transition from distant to up close touch screen interaction.
Kendon’s social anthropology research posits that we use
seven different gestures to point when communicating [10].
These pointing (“deictic”) gestures are classified by the
context of what is being pointed at. Relevant to our work is
the gesture to indicate a specific thing, done with the index
finger extended and palm facing down. One can imagine a
laser beam emanating from the tip of the finger along the
vector of the finger’s direction, resulting in a pointing
technique that it is arguably natural and conceptually simple.
Our survey of previous work suggests that this “ray casting”
technique is the most obvious for distant pointing. As
discussed earlier, this style of pointing is fast for selecting
large targets, but prone to errors due to hand jitter. A nice
quality of ray casting is that it is consistent with touch screen
input – when the finger touches the display, the ray has zero
length and it behaves like a touch screen.
If we observe the motion of the hand when using a mouse,
another candidate technique emerges. If the mouse is
thought to be invisible, the motion of the hand alone can be
used for cursor positioning. Since the very large display is a
vertical plane, hand motion should also be in a parallel
vertical plane (rather than horizontal) to remain consistent
with touch screen interaction close to the display.

Clicking and Clutching Without a Button
A classic problem in device-free interaction is how to signal
a selection or a clutch in the absence of any buttons. One
solution, which has been adopted by many eye tracking
systems [8] is to use a cursor dwell time threshold as a click
event [31]. Although simple, this introduces a fixed,
constant lag, and interactions may suffer from the “Midas
Touch effect” [8] in very dense environments. Another
approach is to use speech to signal a selection [1] but this is
excessive for simply capturing click down and up actions.
We explored different hand gestures and postures to clutch
and click. Since the hand is also pointing, the click or clutch
action should be designed to minimize hand movement side
effects, which can be tricky due to the interconnectedness of
tendons and ligaments in the hand. We also felt that the
posture or gesture used to deactivate the clutch should have
some tension, similar to the natural tension that is required
when lifting the mouse to clutch.
When depressing a physical button or tapping a display
surface, we receive instant kinesthetic feedback confirming
that the click has been triggered. Wang and MacKenzie [29]
found that performance degraded significantly when there
was no physical surface to touch when manipulating virtual
objects with the hand. Thus, with free space hand gestures,
we need to investigate other sensory replacements in an
attempt to mitigate the effects of lost kinesthetic feedback.

35

System Protoype
To prototype and explore different techniques we use a
Vicon (www.vicon.com) motion tracking system to get
accurate and fast position information for the hand. We
place passive reflective markers on the thumb, index finger,
ring finger, back of the palm, and wrist (Figure 1c). The
system can uniquely identify each marker and stream its
sub-millimetre 3D coordinates at up to 120 Hz to other
applications. While the inconvenience of using markers and
a specialized motion tracking system does detract from the
implementation simplicity of our prototype, this technology
allows us to explore advanced interaction techniques today,
before marker-free tracking becomes widely available. As
such, this hardware should be viewed simply as an enabling
technology for our prototype, rather than one that would be
used in a future real implementation of our interface ideas.
We also use a 5m wide, 1.8m high, back projected display
(Figure 1a), with imagery generated by 18 1024x768
resolution projectors in a 6x3 tiling for an effective
resolution of 6144x2304 pixels. A cluster of 18 PCs drive
the projectors, with Chromium (chromium.sourceforge.net)
providing distributed graphics rendering over the cluster.
Although this display is not currently enabled for touch
input, we also used a 50” touch-enabled plasma display to
observe how the techniques transition from up close to
distant usage. Our custom software was written in C++ and
OpenGL and is capable of easily performing position and
gesture recognition at 45 FPS, producing a maximum lag
time of only 22 ms between a movement and screen update.

CLICKING TECHNIQUES
We created two clicking techniques, one using the index
finger and the other using the thumb. Since our design goal
is to create a selection technique wholly compatible with
current “point and click” user interfaces, our techniques
support click down and click up events – allowing single
clicks, double clicks, and drags. We use visual and auditory
feedback to replace the lost kinesthetic feedback of a
physical button push or display tap [31]. To visually indicate
when a click down has occurred, we show a short animated
progression of a medium sized square shrinking and
disappearing at the position where the event occurred. At the
same time, a distinctive clicking sound is played
characterized by a waveform envelope with a long attack
and short release reminiscent of the “in” sound made by pet
training “clickers” (Figure 2b). In a similar way, a click up is
visualized by a small square expanding from the event point
and a slightly different clicking sound with a slightly higher
pitch, short attack, and long release (Figure 2d). If a click up
event is not registered within 1000 ms, a small square is
shown attached to the tail of the cursor arrow (Figure 2c)
indicating a prolonged click down state used for dragging.
This not only acts as a visual replacement for the kinesthetic
tension normally experienced when holding a button down,
but we also found that this aided new users in learning the
tolerances of the click up style.

(a)

sound visualization AirTap Thumb Trigger

(b)

(c)

(d)

Figure 2: Clicking Techniques, Visualizations, and Sound.
AirTap is a “down and up” gesture of the index finger.
ThumbTrigger is an “in and out” gesture of the thumb. Sound
and visualization are used to make the clicking feel more
physical in the absence of a surface or button: (a) default state
(no clicking); (b) click down gesture displays an animated series
of rectangles scaling down towards the click point and plays a
distinctive click down sound; (c) holding the finger or thumb in a
click down state displays a small square on the tail of the
pointer; (c) click up gesture displays an animated series of
rectangles scaling out from the click point and plays a click up
sound.

AirTap
The AirTap click technique is similar to how we move our
index finger when clicking a mouse button or tapping a
touch screen. We found two main challenges when
designing this technique. The first challenge is that there is
no physical object to constrain the downward movement of
the finger to a definite start or stop position. To deal with
this, our click down recognition algorithm uses relative
features of the downward finger motion, specifically
velocity and acceleration, in addition to absolute position
and movement axis. The second challenge is the ambiguity
and idiosyncrasy of this style of finger movement. Other
hand gestures and even involuntary finger movement tend to
resemble this type of clicking action, and individuals tend to
move their finger in distinctive, but different, ways. We
adopted a simple calibration scheme that tuned the
recognition parameters to a particular individual’s clicking
style, which narrowed the space of recognized clicks and
reduced false positives in click recognition. To calibrate, we
record 5 seconds of index finger movement as the user
clicks. From this data we find the principle movement axis,
m, by fitting a Gaussian to the finger positions to get the
dominant Eigenvector. We find a threshold position, Pup, to
trigger a click up, and threshold distances moved in 200ms,
Ddown and Dcancel, to begin a click down or cancel
respectively. We also use a fixed pause velocity threshold,
vpause of 80mm/s.

36

Let the current finger position be P with velocity v and
distance traveled in 200ms be D (v and D are both measured
along the principle movement axis m). Figure 3 shows the
state machine for this recognition algorithm.

Default

Possible

Down

Up

D > Ddown

and D < Dcancel

D > Dcancel

P > Pup

D < Dcancel

and v < vpause
Figure 3. Recognition state machine. The current finger position
is P with velocity v and distance traveled in 200ms, D. v and D
are both measured along the principle movement axis m.

ThumbTrigger
Similar to Grossman et al. [7], we implemented a thumb
trigger style click where the thumb is moved in and out
towards the index finger side of the hand (Figure 2).
Theoretically, this click style has a distinct advantage over
the AirTap since the thumb can touch the side of hand and
provide kinesthetic feedback when clicking, and also
provides an absolute down position. Based on this, our first
implementation used only distance thresholds; once the
thumb moved past a certain point on the way towards the
palm, a click down was triggered, and likewise when
travelling away during a click up. However, early tests
revealed that users found “clicking” their thumb against the
side of their hand uncomfortable and tiring. Therefore, we
adopted a recognition algorithm which uses a blend of
relative features and absolute features, similar to AirTap.

Adjusting for Intended Click Point
When performing either of these click gestures, the
interconnected nature of the hand’s physiology causes some
involuntary finger and hand movement. To combat this, we
adjust the position of the click down or up event to be the
intended position, taken to be the point where the cursor was
pointing when the click gesture began.

POINTING TECHNQIUES
We designed three pointing techniques: absolute position
finger ray casting, relative pointing with clutching, and a
hybrid technique using ray casting for quick absolute coarse
pointing combined with relative pointing when more
precision is desired. These techniques depend on simple
hand postures to signify a clutch or ray cast point which we
will discus now.

Detecting and Teaching Hand Postures
We detect whether individual tracked fingers are pointing
out or curled into the palm based on threshold distances
between the current finger marker position and the closed or
open positions. For example, open and closed hand positions
vary between individuals, so we calibrate through a simple
10 second process. Asymmetrical thresholds are used to
move the finger to an open or closed state; this eliminates

“thrashing” when near an ambiguous position. To encourage
users to adopt definite hand postures, we created an
ambiguous posture visualization (Figure 4, Figure 1b). A red
circle appears and becomes more intense when the posture
nears an ambiguous position. We found this to be an
effective teaching signal, and it appeared to be effective in
training users to adopt clean postures.

open closedambiguous
Figure 4. Ambiguous Posture Visualization. Increasing intensity
of a red disk indicates an ambiguous posture.

RayCasting
Drawing from previous work in interaction design and
bolstered by social anthropological research on human
pointing [10] we implemented a finger ray casting pointing
technique. The cursor is placed at the point where a ray
emanating from the index finger intersects with the display
(Figure 5). Note that using the index finger in this way rules
out combining the AirTap clicking gesture with Ray
Casting. As we discussed earlier, there is a known problem
of “jittery” cursor movement with laser pointers due to
natural hand tremors, and this is exacerbated by the use of
the finger to define the ray. We experimented with using the
inner surface of the palm to define the ray, but, although this
reduced the jittery nature somewhat, it is not how we
actually point in the real world [10] and, more importantly,
forced more extreme movements of the forearm, increasing
fatigue. Researchers have explored various filters to steady
the cursor in the case of laser pointing like Kalman filtering
[20], a two stage mean filter based on angular velocity [31]
and more elaborate models [14, 15]. Initially, we used a
simple recursive low pass filter on the 2D cursor position,
but results from our pilot evaluation led us to improve on it.
We designed a dynamic recursive low pass filter for 3D
marker positions that define the ray. This interpolates
between cutoffs of .25Hz and 5Hz (with a 90Hz sample rate)
based on marker velocity v. If v < 10mm/s then the low
cutoff is used, if v > 200 mm/s then we use the high cutoff,
and for values in between we use a linear interpolation of
cutoff based on v. We found this effectively removed jitter
when the pointer was still, yet introduced almost no lag,
which can be detrimental to performance [30].

Relative Pointing with Clutching
In this technique we use the motion of the hand projected on
a vertical plane for cursor positioning (Figure 6a). We first
considered using an absolute mapping. By calibrating the
scale of the hand’s vertical coordinate frame to a
comfortable range of movement, we found that cursor
control was surprisingly accurate and fast. However, a
problem emerges as the user moves: our design constraint of
tracking only a single hand prevented us from translating the
coordinate frame according to body movement.

37

When using whole hand spatial input, Hinckley et al. [9]
emphasize the importance of using relative rather than
absolute mappings. Mapping absolute hand positions
directly to a parameter can be too abstract and they suggest
moving relative to a physical prop instead. Since our design
goals preclude using props, we adopted a relative technique
where an absolute start position is chosen on a vertical plane
using a clutching mechanism and subsequent left-right and
up-down motion is relative to that. Hinckley et al. refer to
this as a ratcheting recalibration mechanism [9].

We use the neutral “safe hand" posture for pointing (Figure
6a) and a clenched fist (“Grip Clutch”) to disengage the hand
from the pointer and recalibrate the position (Figure 6b). We
experimented with tense postures for pointing but found that
clicking with the fingers or thumb is difficult if the hand is
under tension. Also, since pointing actions are typically of
longer duration than clutching actions, it makes sense to use
a tense posture for clutching rather than pointing. To inform
the user that the cursor has been disengaged from hand
movement, we animate the standard arrow pointer icon to
rotate so it appears to dangle from the arrow point. When the
clutch is deactivated, the pointer rotates back to its
customary angle. This subtle visualization suggests that
when the hand is connected to the cursor the pointer is “held
up by the hand” and when disengaged it swings down to a
rest position. The ambiguous posture visualization (Figure
4) helps the user adopt clear clutch or no clutch poses.
To increase the range of cursor movement, we implemented
the same variable control-display (CD) gain function used
for pointer control in Windows XP. This adjusts the CD gain
according to a non-linear function of velocity [16]. Once the
hand and pointer are reasonably calibrated through
clutching, we found this function worked well. We selected
a scale factor of 0.7 which made it easy to traverse thousands
of pixels from one side of the display to the other, yet did not
introduce any loss in accuracy when selecting small targets.

Hybrid RayToRelative Pointing
Our third technique uses ray casting as a way to recalibrate
the hand position while simultaneously repositioning the
cursor near the desired target. This eliminates the cognitive
load of the Grip Clutch’s backwards ratcheting movement,
and takes advantage of ray casting’s ability to do rapid
coarse grain pointing. Direct cursor control is accomplished
using the same relative hand movement technique (Figure
7a) discussed in the previous section but when the hand pose
changes to a finger point, the cursor is replaced with a circle
positioned on the display where the ray emanating from the
finger intersects with the display (Figure 7b). The circle can
be rapidly repositioned with very little hand movement and
the cursor positioned at the centre when the hand returns to
the neutral safe hand position. Returning to the neutral
posture causes the index finger tendons to contract and jerk
the circle upwards, positioning the cursor too high. To
eliminate this, we adjust the cursor position to be the
intended position, taken to be the point where the return to
open hand is initiated.

Figure 5. RayCasting. A ray extends from the tip of the finger
and the cursor is positioned where it intersects with the large
display surface.

(a)

(b)

Figure 6. Relative Pointing with Clutching. (a) The open hand is
used for relative cursor control, and (b) a clenched fist (“Grip
Clutch”) is used for clutching. When the clutch is engaged, the
cursor arrow swings to a dangling position.

(a)

(b)

Figure 7 Hybrid RayToRelative Pointing. (a) The open hand is
used for relative cursor control, and (b) recalibrating (or
clutching) is performed with an absolute ray cast pointing
gesture. When ray cast pointing, the cursor transforms to a large
circle to suggest the selection of an approximate area.

PILOT EVALUATION
The purpose of our initial evaluation was to compare and
refine the ThumbTrigger and AirTap click gestures when
used with each of our three pointing techniques (except for
the AirTap and RayCasting combination for obvious
reasons). We used a Fitts’ [5, 13] style task requiring
sequential clicks on different sized circular targets (10mm,
30mm, 90mm) with varying distances (3200mm, 1600mm,
800mm). We did not see a difference in trial performance
time or error rate between the two different click gestures.
Since AirTap is more consistent with touch screen
interaction, and since the ThumbTrigger’s theoretical
advantage of kinesthetic feedback did not materialize in
these exploratory tests, we elected to use AirTap with the
relative pointing technique in further studies. We found
surprisingly high error rates for the RayCasting technique in

38

the small and medium target sizes varying from 20% to
80%, more than twice that of the other techniques. In
addition, users found RayCasting to be excruciatingly
difficult and tiring due to the extra effort when attempting to
select small targets with poor pointing precision. This
prompted us to improve the RayCasting pointer position
filter from a simple low-pass filter to a dynamic low-pass
filter as discussed previously.

EXPERIMENTAL EVALUATION
Goals
Our goal is to compare task completion time, error rate,
recalibration activations, recalibration frequency and total
recalibration time between the three pointing techniques:
RayCasting, Relative, and RayToRelative. We expect the
RayCasting technique to be the fastest since it requires no
recalibration, but will have a higher error rate with small
targets. Theoretically, the RayToRelative technique has a
time advantage over the Relative technique since the
recalibration mechanism simultaneously moves the cursor
closer to the target. However, the overhead of switching
between ray casting and relative movement, and the implicit
target acquisition task during recalibration (i.e., the ray
casting action must coarsely point to the approximate region
of interest) may introduce too much delay.

Participants
Twelve participants, 4 women and 8 men ranging in age
from 20 to 36 years, participated. None of the participants
had experience with pointing tasks on large displays.

Apparatus
The experiment used the Vicon motion tracking system with
passive markers attached to the hand, and the very large high
resolution display as discussed previously. The participants
stood at a stationary, central position 4 m away from the
display.

Task and Stimuli
From our pilot evaluation, we found that participants were
willing to move their hand to the extreme extents of their
range of motion, adopting awkward poses to avoid the time
penalty associated with recalibration. This behaviour is not
characteristic of a real usage scenario where users would
adopt a more energy conserving posture, balancing speed
and effort. To encourage a more relaxed posture, we
artificially constrained participant’s movement by
introducing boundaries where hand tracking appears to fail.
We revealed proximity to a boundary with a blue disk
surrounding the cursor which fades in to full opacity and
displays an ‘X’ when the boundary is reached.
In the experiment, each set of trials begins with the cursor
and first target hidden until the user holds their hand in a
experimentally controlled start location for 2 seconds. This
simulates the transition from some arbitrary hand-based task
to a pointing task. The cursor appears at an experimentally
manipulated distance from a circular white target. To select
the target, the participant may have to clutch and recalibrate
to control the cursor in a comfortable manner. We refer to

this first trial task of starting the cursor movement and
selecting the first target as the Transition Task.
After the first target is selected successfully, the next target
within a series of three targets appears. The participant must
successfully select this target before the next appears, and so
on. We call this the Sequence Task, which differs from the
Transition Task in that the user is already controlling the
cursor with the given technique from the time the target
appears. This simulates the real interface situation where
users might want to make several selections in a row before
relaxing their hand and cursor. We also chose a sequence
design to ensure that participants use the techniques in an
ecologically sound manner, optimizing for both speed and
comfort. In contrast, if we had used a single target per trial,
participants could have optimized for speed while ignoring
momentary discomfort for the short duration of each single
task. The net result is that our design ensures to the extent
possible that participants recalibrate their hand to cursor
relationship when required, simulating real usage scenarios.

Design
A repeated measures within-participant factorial design was
used. The independent variables were Technique (Relative,
RayToRelative, and RayCasting), distance between targets
D (DL = 4020mm, DM = 2680mm, DS = 1340mm) and target
width W (WL = 144mm, WM = 48mm, WS = 16mm), where
the subscripts L, M, and S are used to denote large, medium,
and small respectively. The Fitts’ index of difficulty (ID) of
our selection tasks range from 3.37 to 7.98 bits.h
Presentation of the three techniques to the 12 participants
was fully counter-balanced, resulting in 6 different
presentation order groups. For each technique, participants
had a 5 minute learning session and 1 block of practice trials.
Then participants were asked to perform 3 blocks of
recorded trials. For each block of trials, participants
performed 6 series for each of the 3 W conditions. A series
consisted of one selection in the Transition Task followed by
3 selections in the Sequence Task. Target distances within
the 6 series were presented randomly, with each of DL, DM,
and DS appearing an equal number of times across the 6
series. W was presented in a Latin square ordering across the
three blocks. Participants had to successfully select each
target before the next target would appear, ensuring that they
did not race through the experiment by clicking anywhere
just to finish quickly. Participants were allowed breaks
between series.
In summary, the experimental design was:

12 participants x
3 techniques x
3 blocks x
3 target widths x
6 sets of Transition Task (1 target) followed by Sequence
Task (3 targets)
= 1944 series (1944 targets selected in Transition Task,
and 5832 targets selected in Sequence Task)

39

RayCasting
RayToRelative
Relative

Transition TaskSequence Task

6

5

4

3

2

1

0

M
ea

n
S

el
ec

tio
n

Ti
m

e
(s

)

RayCasting
RayToRelative
Relative

RayCasting
RayToRelative
Relative

Transition TaskSequence Task

6

5

4

3

2

1

0

M
ea

n
S

el
ec

tio
n

Ti
m

e
(s

)

WSWMWL

60

50

40

30

20

10

0

M
ea

n
Er

ro
r R

at
e

(%
) RayCasting

RayToRelative
Relative

WSWMWL

60

50

40

30

20

10

0

M
ea

n
Er

ro
r R

at
e

(%
) RayCasting

RayToRelative
Relative

RayCasting
RayToRelative
Relative

RayCasting
RayToRelative
Relative

6

5

4

3

2

1

0

M
ea

n
S

el
ec

tio
n

Ti
m

e
(s

)

WSWMWL

RayCasting
RayToRelative
Relative

RayCasting
RayToRelative
Relative

6

5

4

3

2

1

0

M
ea

n
S

el
ec

tio
n

Ti
m

e
(s

)

WSWMWL

Figure 8. Mean selection times for
Sequence Task and Transition Task.

Figure 9. Mean error rate by width for
Sequence Task.

Figure 10. Technique and width interaction
on selection time for Sequence Task.

Selection Time and Error Analysis
Results for Sequence Task
Selection time for the Sequence Task was defined as the time
it took to move from the previous target and successfully
select the next target. Targets that were not selected on the
first attempt were marked as errors, and not included in the
timing analysis. Repeated measures analysis of variance
showed that the order of presentation of the three techniques
had no significant effect on selection time or error rate,
indicating that a within-participants design is appropriate.
There was no significant main effect for technique on
selection time, with means of 3088, 3097, and 3128 ms for
the Relative, RayToRelative, and RayCasting techniques
respectively (Figure 8). Since our analysis below found
minimal clutching in the Sequence task, this indicates that
the relative hand movement technique used by both Relative
and RayToRelative is equivalent in speed to the absolute
RayCasting pointing technique.
There was a significant interaction between technique and
target width (F4,24 = 33.945, p < .001). Post hoc multiple
means comparison tests showed that RayCasting was
significantly slower than Relative and RayToRelative for WS
(by 485 and 654 ms respectively, both p < .05) but faster for
WL (by 447 and 449 ms respectively, both p < .05) (Figure
10). This suggests that although there is an overhead in the
relative hand movement techniques, the small controlled
movements required for selecting small targets are faster for
the relative hand movement techniques when compared to
RayCasting. With RayCasting, the small corrective
movements required by small targets become more difficult
and time consuming. There was no significant interaction
found between technique and target distance.
There was a significant effect for technique on selection
error rate (F2,12 = 109.212, p < 0.001). Multiple means
comparison tests found RayCasting to be significantly more
error prone with a mean error rate of 22.5% compared to
3.5% and 5.7% for Relative and RayToRelative respectively
Note that error rates for Relative and RayToRelative are
within the typical range for Fitts’ pointing tasks. Not
surprisingly, a significant interaction was found between
technique and width (F4,24 = 122.413, p < 0.001). Multiple
means comparison tests showed RayCasting had
significantly higher errors rates of 56% for WS and 10.5% for

WM (both p < .05). In comparison, the error rates for Relative
was 9.6% and 1.1% and RayToRelative was 15.4% and .9%
for WS and WM respectively. WL error rates were less than
1.1% for all techniques (Figure 9).

Results for Transition Task
Selection time for the Transition Task was the length of time
to successfully click on the first target after the cursor
appeared. Like the Sequence Task, selection errors were not
included in the timing analysis. There were no significant
technique order effects for selection time or error rate.
There was a significant main effect for technique on
selection time (F2,12 = 20.193, p < .001). RayCasting, with a
mean time of 2843ms, was significantly faster than Relative
and RayToRelative, with mean times of 3926 and 3744ms
respectively (Figure 8). Since there was no significant
difference in mean selection time for the Sequence Task, this
indicates that recalibration time is a significant factor in
pointing performance.
There was a significant interaction between technique and
distance on selection time (F4,24 = 14.692, p < 0.001).
Multiple means comparison tests found RayCasting to be
significantly faster than Relative and RayToRelative for DL
and DM (all p < .01), but not DS. The lower frequency of
recalibrations for DL prevents the recalibration overhead
time from slowing the two relative positioning techniques
significantly. This reaffirms our Sequence Task results: the
relative techniques are equivalent in speed to RayCasting
when there is no recalibration. The remaining results for
time and error revealed similar trends to the Sequence Task.

Recalibration Frequency Analysis
We designed the Transition Task to simulate a situation with
a high likelihood of a recalibration step with the Relative and
RayToRelative techniques (RayCasting requires no
recalibration). Indeed, we found that a recalibration step was
used in the Transition Task 63.1% of the time with Relative
and 63.9% with RayToRelative; this difference in
recalibration frequency was not significantly different.There
was a significant main effect for target distance on
recalibration frequency (F2,12 = 8.357, p < .001) with means
of 91.3%, 73.9%, and 25.5% for DL,, DM; and DS. The longer
the distance the more often users had to recalibrate, clearly
indicating that recalibration is an important factor on large
displays. In the Sequence Task participants recalibrated only

40

35.8% and 31.5% with Relative and RayToRelative
respectively; no significant difference was found between
techniques. Once reasonable calibration has been achieved,
subsequent selection tasks require fewer calibration steps.

Recalibration Time and Activation Analysis
We examined metrics related to how the Relative and
RayToRelative recalibration mechanisms were used. Our
analysis included only trials in which a recalibration
occurred across Transition and Selection tasks including
only distances DL and DM (since DS had a low frequency of
recalibration). Recalibration time is the time spent
recalibrating in a single trial, by clutching with the Relative
technique, or by switching to and from ray casting with
RayToRelative. Recalibration activations are the number of
times a user recalibrated in a single trial. There were no
significant effects for technique presentation order on
recalibration time or activations indicating that a
within-subjects analysis is appropriate.
There was a significant main effect for technique on
recalibration time (F1,6 = 7.495, p = .034), with means of 901
and 1536 ms for Relative and RayToRelative respectively.
Recall that we found no significant difference in overall
selection time between these techniques. The difference in
recalibration time between the two techniques is interesting,
as it clearly indicates that the overhead of switching between
ray casting and relative pointing with RayToRelative,
despite the smooth transition design, is higher than any
advantage gained in bringing the cursor closer to the target
in the ray cast action. In contrast, the clutching in the
Relative technique only serves to reset the position of the
cursor relative to the hand and does not move the cursor
closer to the target, but the results clearly indicate that this is
not a major drawback to this technique.
There was a significant main effect for technique on
recalibration activations (F1,6 = 16.680, p = .006), with
means of 1.133 and 1.027 for Relative and RayToRelative
respectively. Post hoc multiple means comparison tests of
distance on technique found a significant difference in
RayToRelative recalibration activations of 1.053 for DL and
1.000 for DM, but no significant difference for Relative.
Considering also the lower recalibration time, this
reinforced our observations that with the Relative technique
users performed recalibration more frequently in fast, short,
consecutive strides independent of distance. However with
the RayToRelative technique, users recalibrated their
position less often, especially with medium distances,
indicating that the coarse positioning aspect of the technique
streamlined the interaction somewhat.

User Feedback
At the conclusion the experiment, we asked each participant
to rank the techniques for speed, accuracy, and ease-of-use.
8 felt Relative was fastest and 7 found it the most accurate
with RayToRelative making up the balance. For ease-of-use,
6 selected Relative, 5 RayToRelative, and 1 RayCasting. We
found most participants liked Relative because the clutching
action was similar to that of lifting a mouse to clutch.

DISCUSSION and CONCLUSIONS
We found that although RayCasting was faster in tasks
where clutching would have been required or when selecting
large targets, its high error rates prevent it from being a
practical technique. We found no major significant effect
between the Relative and RayToRelative techniques in terms
of selection time or error rate. The relatively low error rates
for these two techniques is reassuring, indicating that they
are equally usable for selection of small (16mm) targets
while standing 4m away from the display.
The two relative hand pointing techniques differed with
regards to the number of recalibration activations and
recalibration time. Interestingly, the longer recalibration
times for the RayToRelative technique did not impact its
overall selection time as compared to the Relative technique,
indicating that the time overhead due to the ray casting
portion of the technique was compensated for by a reduction
in subsequent relative movement.
We note that our techniques currently only support actions
equivalent to those of a single button mouse or touch screen.
It would be interesting to explore using the thumb and index
finger together to “left” and “right” click.
Our design of the ambiguous clutch visualization was
observed qualitatively to be an effective “teaching input”
that helped users adopt more definite postures. This idea
could be applied to click gesture recognition. When a
click-like finger movement just missed being classified as a
click gesture, visual feedback could be shown with a
suggestion how to adjust finger movement so it is classified
as a click the next time (make it faster, slower, longer, etc).
It would be interesting to consider the other six pointing
gestures from Kendon’s study [10], as well as additional
body movements, in the design of future pointing
techniques. For example, using a second hand or eye gaze or
head position to accelerate pointing by selecting a region of
the display within which the dominant hand can perform
fine grained pointing and clicking.
In summary, this research has made several contributions:
we have motivated the need for facile pointing and clicking
techniques for interacting with large displays from a
distance; identified desirable characteristics for such
techniques; and developed and evaluated new pointing and
clutching techniques that leverage the simplicity and
inherent human ability to point with a hand. Of particular
interest are the subtle nuances in the design of our
techniques. We use visual and auditory feedback in our
clicking techniques to compensate for the lack of kinesthetic
feedback typically present when clicking a physical button;
provide unobtrusive but yet effective visualizations to subtly
alert the user when postures and gestures are about to
become ambiguous; and used various heuristics to tune the
parameters of the clicking mechanisms such that they
behave as users implicitly expect. Finally, our evaluations
demonstrate the usability of relative hand base pointing
techniques with error rates in the same low range one
typically sees with status-quo devices like mice.

41

ACKNOWLEDGEMENTS
We thank John Hancock, Anastasia Bezerianos, Géry
Casiez, and our experiment participants.

REFERENCES
1. Bolt, R. (1980). Put-that-there: Voice and gesture at the

graphics interface. Computer Graphics, 14(3). p.
262-270.

2. Bolt, R. (1981). Gaze-orchestrated dynamic windows.
Computer Graphics, 15(3). p. 109-119.

3. Bowman, D. and Hodges, L. (1997). An evaluation of
techniques for grabbing and manipulating remote objects
in immersive virtual environments. ACM Symposium on
Interactive 3D Graphics. p. 35-38.

4. Corradini, A. and Cohen, P. (2002). Multimodal
speech-gesture interface for hands-free painting on
virtual paper using partial recurrent neural networks for
gesture recognition. International Joint Conference on
Neural Networks. p. 2293-2298.

5. Fitts, P.M. (1954). The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47. p.
381-391.

6. Fono, D. and Vertegaal, R. (2005). EyeWindows:
Evaluation of eye-controlled zooming windows for
focus selection. ACM CHI Conference. p. 151-160.

7. Grossman, T., Wigdor, D., and Balakrishnan, R. (2004).
Multi finger gestural interaction with 3D volumetric
displays. ACM UIST Symposium. p. 61-70.

8. Hansen, J., Andersen, A., and Roed, P. (1995). Eye-gaze
control of multimedia systems. ACM Symposium on Eye
Tracking Research & Applications. p. 115-122.

9. Hinckley, K., Pausch, R., Goble, J.C., and Kassell, N.
(1994). A survey of design issues in spatial input. ACM
UIST Symposium. p. 213-222.

10. Kendon, A. (2004). Gesture: visible action as utterance.
2004: Cambridge University Press.

11. Krueger, M. (1991). VIDEOPLACE and the interface of
the future, in The art of human computer interface
design, B. Laurel, Editor. Addison Wesley. p. 417-422.

12. MacKenzie, I. and Jusoh, D. (2001). An evaluation of
two input devices for remote pointing. Eighth IFIP
Working Conference on Engineering for
Human-Computer Interaction. p. 235-249.

13. MacKenzie, S. (1992). Fitts' law as a research and design
tool in human-computer interaction. Human-Computer
Interaction, 7. p. 91-139.

14. Matveyev, S. and Göbel, M. (2003). The Optical
Tweezers: multiple-point interaction technique. Virtual
Reality Software and Technology. p. 184-188.

15. Matveyev, S., Göbel, M., and Frolov, P. (2003). Laser
pointer interaction with hand tremor elimination. HCI
International. p. 376-740.

16. Microsoft. (2005). Pointer ballistics for Windows XP.
Accessed on 14 Feb 2005, www.microsoft.com
/whdc/device/input/pointer-bal.mspx.

17. Millodot, M. (1997). Dictionary of Optometry and
Visual Science. Butterworth-Heinemann. p. 8, 44.

18. Myers, B., Bhatnagar, R., Nichols, J., Peck, C.H., Kong,
D., Miller, R., and Long, C. (2002). Interacting at a
distance: measuring the performance of laser pointers
and other devices. ACM CHI Conference. p. 33-40.

19. Nickel, K. and Stiefelhagen, R. (2003). Pointing gesture
recognition based on 3D-tracking of face, hands and
head orientation. International Conference on
Multimodal Interfaces. p. 140-146.

20. Oh, J.-Y. and Stuerzlinger, W. (2002). Laser pointers as
collaborative pointing devices. Graphics Interface. p.
141-149.

21. Olsen, D.R. and Nielsen, T. (2001). Laser pointer
interaction. ACM CHI Conference. p. 17-22.

22. Parker, J.K., Mandryk, R.L., and Inkpen, K.M. (2005).
TractorBeam: Seamless integration of remote and local
pointing for tabletop displays. Graphics Interface. p.
33-40.

23. Peck, C. (2001). Useful parameters for the design of
laser pointer interaction techniques. Extended Abstracts
of the ACM CHI Conference. p. 461-462.

24. Pierce, J., Forsberg, A., Conway, M., Hong, S., and
Zeleznik, R. (1997). Image plane interaction techniques
in 3D immersive environments. ACM Symposium on
Interactive 3D Graphics. p. 39-43.

25. Pierce, J., Stearns, B., and Pausch, R. (1999). Two
handed manipulation of voodoo dolls in virtual
environments. ACM Symposium on Interactive 3D
Graphics. p. 141-145.

26. Poupyrev, I. and Ichikawa, T. (1999). Manipulating
objects in virtual worlds: categorization and empirical
evaluation of interaction techniques. Journal of Visual
Languages and Computing, 10. p. 19-35.

27. Skaburskis, A., Vertegaal, R., and Shell, J. (2004).
Auramirror: Reflections on attention. ACM Symposium
on Eye Tracking Research & Applications. p. 101-108.

28. Vogel, D. and Balakrishnan, R. (2004). Interactive
public ambient displays: Transitioning from implicit to
explicit, public to personal, interaction with multiple
users. ACM UIST Symposium. p. 137-146.

29. Wang, Y. and MacKenzie, C. (2000). The role of
contextual haptic and visual constraints on object
manipulation in virtual environments. ACM CHI
Conference. p. 532-539.

30. Ware, C. and Balakrishnan, R. (1994). Reaching for
objects in VR displays: Lag and frame rate. ACM
Tranactions on Computer-Human Interaction, 1(4). p.
331-356.

31. Wilson, A. and Pham, H. (2003). Pointing in intelligent
environments with the World Cursor. INTERACT 2003.

32. Zhai, S. (1998). User performance in relation to 3D input
device design. Computer Graphics, 32(4). p. 50-54.

33. Zhai, S., Morimoto, C., and Ihde, S. (1999). Manual and
gaze input cascaded (MAGIC) pointing. ACM CHI
Conference. p. 246-253.

42

